

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 1

Constraints
between

modeling perspectives

Manfred Jeusfeld
University of Skövde, Sweden

OMI KA
Nemo Summer School
Vienna 2017

2017-02-21last change

CC BY-SA 4.0

http://www.his.se

http://conceptbase.sourceforge.net/mjf/
https://creativecommons.org/licenses/by-sa/4.0/

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 2

Resources

http://conceptbase.cc
Home page of the ConceptBase metamodeling system used in this tutorial

http://conceptbase.sourceforge.net/import-cb-appliance.html
virtual appliance including an executable ConceptBase installation

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2616290
Slides of a method engineering course (highly recommended as preparation)

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3810007
Supplementary material for this tutorial; use permitted under
a CC license (see source files or README files in the subfolders)

Please check out the supplementary material provided above.
You are also advised to download and install ConceptBase from the homepage
above. It installs on Windows, Mac OS, and Linux. You need Java 7 or higher.

http://link.springer.com/chapter/10.1007%2F978-3-319-39417-6_2
Manfred A. Jeusfeld: SemCheck - Checking Constraints for Multi-perspective Modeling
Languages. In Dimitris Karagiannis, Heinrich C. Mayr, John Mylopoulos (eds.): Domain-Specific
Conceptual Modeling - Concepts, Methods and Tools. Springer, 2016, pp. 31-53

http://book.omilab.org/psm/content/semcheck/info
SemCheck page at OMiLAB

http://conceptbase.cc/
http://conceptbase.sourceforge.net/import-cb-appliance.html
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/2616290
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3810007
http://link.springer.com/chapter/10.1007%2F978-3-319-39417-6_2
http://book.omilab.org/psm/content/semcheck/info

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 4

Enterprise modeling frameworks

Modeling
Language A1

Modeling
Language A2

Modeling
Language A3

Modeling
Language B1

Modeling
Language B2

Modeling
Language B3

Modeling
Language C1

Modeling
Language C2

Modeling
Language C3

Perspective

P
hase

“Information” “Function” “Resources”

“Specification”

“Design”

“Implementation”

● Organize multiple modeling languages into a two-dimensional grid
● There are cross-notational links between perspectives (balance!) and development phases (map!)
● more than two dimensions are also possible, e.g. include time/versions

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 5

The Zachman framework

*) im
a

g e
 f ree ly li cen se

d fro m
 W

ik ipe
dia :Z

a
chm

a
n F

r am
ew

o rk

Enterprises are complex. As a consequence, enterprise models focus
on certain levels (roles) and perspectives.

The partial models need to be synchronized since they make statements about
the same reality (here: the enterprise).

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 6

Goals of this tutorial

... to introduce into logic-based conceptual meta modeling

... to show how different modeling languages can be
 integrated by balancing rules

... to demonstrate that variants of modeling languages
 can share the same semantic core (Petrinets, BPMN, STD)

... and to listen to you!

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 33

Concrete and abstract statements

 Token (data) level: Bill earns 10000 Dollars.

 Class level: Employees have salaries.

 Meta class level: Entities are described by attributes.

 Meta meta class level: Information can be modeled by graphs.

M0

M1

M2

M3

 The statement at the token level is an instance of the statement at
 the class level which is an instance of the statement at the meta class level
 and so on.
 Goal: Map this to logic.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 34

The Information Resource Dictionary System (ISO IRDS 1990)

Data/Production level
(tokens/data)

Schema/Model level
(classes,schema)

Language level
(meta classes)

Language definition level
(meta meta classes)

 Contains the facilities to
 define a notation (formal
 language for modeling/design/...)

 Contains the definition of
 notations using the facilities of
 the above level

 Contains models/schemata/
 programs written in a certain
 notation

 Contains example data/process
 traces conforming the schemata/
 models of the above level

M0

M1

M2

M3

N.B.: We sometimes use the term 'notation' as a synonym to 'language'.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 35

The ERD Notation in IRDS levels

M3: Meta meta model

M2: ER Modeling language

M1: ER Diagram

M0: Data

Nodes and links

EntityType
Relationship

Type

Employee

miller

in, is example of

in, is example of

in, is example of

 ... defines entity types
 etc. by distinct node
and link types

 ... defines node
 and link types

 ... defines the
conceptual schema of
a database in ER
notation

 ... contains example
data conforming the
schema

role

worksFor

Project

wf-123

proj-17 proj-45 check
semantics

check
syntax

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 43

O-Telos: Graphical representation

(Bill in Employee)
(10000 in Integer)
(Bill salary/earns 10000)

(Employee in EntityType)
(Integer in Domain)
(Employee ent_attr/salary Integer)

(EntityType in Node)
(Domain in Node)
(EntityType connectedTo/ent_attr Domain)

Node

EntityType

in

Domain

in

ent_attr

Employee Integer
salary

O-Telos facts

Bill 10000
earns

same information as graph

connectedTo

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 44

Instantiation and attribution in O-Telos

c

x

in

(x in c)
“the object x is an instance
of the object c”

c

x y

dm

n

(x m/n y)

(x!n in c!m)

“the object x has a relation
labeled n to y ;
this relation is an instance
of the class-level relation m”

this denotes the link n of object x

 We need to represent data, schema, notation etc. uniformly as objects!

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 45

c

x

in

d

isA

“c is a subclass of d”

(c isA d)
 we want to achieve
 that any instance
 of c is automatically also an
 instance of d *

Specialization in O-Telos

Example:

Manager

Mary

in

Employee

isA

(Manager isA Employee)
(Mary in Manager)

*) This will be done by the pre-defined deductive rule

forall x,c,d (x in c) and (c isA d) ==> (x in d)

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 50

Principal interaction

Server: cbserver.iit.his.se

ConceptBase
Server

Port: 4001

Client: Your computer

CBIva
CBGraph
CBShell

TELL: FRAME
UNTELL: FRAME

answer

You can also start the CBserver
server on your local computer
(“localhost”) if the CBserver is
supported for your platform

See also ConceptBase.cc User Manual

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 54

From frames to predicates

Bill in Employee,Pilot with
 salary
 earns: 10000;
 licenceFor
 type1: Airbus300;
 type2: Boeing767
end

(Bill in Employee)
(Bill in Pilot)

(Bill salary/earns 10000)

(Bill licenseFor/type1 Airbus300)
(Bill licenseFor/type2 Boeing767)

• The translation from frames to ground predicates and vice versa is straightforward

Manager isA Employee with
 attribute

 headOf: Department
end

(Manager isA Employee)

(Manager attribute/headOf Department)

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 70

Violating the pre-defined constraint

Employee in Individual with
 attribute
 worksOn: Project
end

Bill in Employee with
 worksOn
 proj1: RenovateB_Building
end

RenovateB_Building in Individual
end

Employee Project
worksOn

Bill RenovateB_Building
proj1

• Experience shows that ‘InstanceOf constraint 1’ is the most frequently violated
 constraint besides syntax errors.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 89

Defining constraints

Class in Individual with
attribute

constraint: MSFOLconstraint;
rule: MSFOLrule

end

The predefined object Class offers attributes for rules and constraints

Employee in Class with
attribute

colleague: Employee;
salary: Integer

constraint
con1: $ forall e/Employee s/Integer

 (e salary s) ==> (s < 200000) $
end Indicates a formula

• The only remarkable
 property of Class is
 that is makes ‘rule’
 and ‘constraint’
 available for its
 instances!

binding variables
to classes

the label of the constraint carries no special meaning

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 92

EntityType in Class with
 attribute
 feature: Domain
 constraint
 atleastonefeature: $ forall et/EntityType exists d/Domain
 (et feature d) $
end

Project in EntityType end

Defining constraints (3)

This instance of EntityType violates the constraint!

• Constraints at the notation level specify which models are ‘syntactically’ allowed. Compare
 to balancing rules!

NB: In this course, we use the term 'notation' as a synonym to '(modeling) language'.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 93

Defining deductive rules

Employee in Class with
attribute

colleague: Employee;
 hasColleague: Employee;

salary: Integer
rule

ru1: $ forall e1,e2/Employee
 (e1 hasColleague e2) ==> (e1 colleague e2)$;

ru2: $ forall e1,e2/Employee
 (e2 hasColleague e1) ==> (e1 colleague e2)$;
 ru3: $ forall e1,e2,ez/Employee
 (e1 colleague ez) and (ez colleague e2)
 ==> (e1 colleague e2)$

end

• Variables in conclusion predicate are forall-quantified. Further variables on the condition body.
• Allowed conclusion predicates: (x m y), (x in c)
• Rules compute new facts out of existing ground facts (P-objects)

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 95

Defining Query Classes (1)

• Query classes look like ordinary classes with constraints. However, their instances
 are ‘computed’.

• Example: LowSalariedEmployees are those employees who earns less than 1000.

Employee

LowSalariedEmployee

Bill

Mary

500
(salary)

1500
(salary)

in

in

in

isA

Integer

(salary)

salary

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 96

Defining Query Classes (2)

LowSalariedEmployee in QueryClass isA Employee with
constraint

lowsal: $ exists s/Integer
 (~this salary s) and (s < 1000) $
end

• The variable ‘~this’ stands for any instance of Employee; it is recommended to use
 the '~' in conjunction with 'this', though 'this' is equivalent to ‘~this’

• The query class stands for a deductive rule:

forall ~this/Employee
 (exists s/Integer (~this salary s) and (s < 1000))
==> (~this in LowSalariedEmployee)

• Query classes are ‘told’ to the system like ordinary classes.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 97

Equivalent formulation without query class

LowSalariedEmployee in Class with
rule

lowsal: $ forall thisE/Employee
 (exists s/Integer (thisE salary s) and (s < 1000))
 ==> (thisE in LowSalariedEmployee) $
end

• This definition will work exactly like the query class definition on the previous slide!

• Query classes are “shortcuts” for deductive rules.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 109

First example: Engineer the ERD-simple notation

Meta meta model

ER Modeling notation

ER Diagram

Data

Node connectedTo

EntityType
Relationship

Type

Employee

miller

in, is example of

in, is example of

in, is example of

role

worksFor

Project

wf123

proj17 proj45

M3: Notation definition level

M2: Notation level

M1: Model level

M0: Data level

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 110

A three-line definition of the ERD-simple notation

Node connectedTo

EntityType
Relationship

Type

Employee

miller

role

worksFor

Project

wf123

proj17 proj45

in

in
in

in

in

in

Graphical Logical

(Node attribute/connectedTo Node)

(EntityType in Node)
(RelationshipType in Node)
(RelationshipType connectedTo/role EntityType)

(Employee in EntityType)
(Project in EntityType)
(worksFor in RelationshipType)
(worksFor role/toEmp Employee)
(worksFor role/toProj Project)

(miller in Employee)
(proj17 in Project), (proj45 in Project)
(wf123 in worksFor)
(wf123 toEmp/emp miller)
(wf123 toProj/p1 proj17)
(wf123 toProj/p2 proj45)

toEmp

toProj

emp

p1

p2

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 125

Inter-relationships between notations

DFD_Node

dataflow

StoreTerminator

DataType
withType

Process

Control
Process outcontrolflow

EventType

withEvent

DFD notation

ObjectType
withType

ERD notation

DD notation

Event list
notation

• The DFD symbols are connected to symbols of other notations
• In a comprehensive method, the notations are always inter-related. They can
 only be fully understood (see also stores in snapshot) when all inter-relationship are represented
• Inter-notational balancing rules are formalizing which combinations of models are allowed

M2:NL

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 126

Balancing between notations

Notation 1 Notation 2

A B
linkage

Model 1 Model 2

x y
link

“cond(x/A) and linkage(x,y) ==> cond(y/B)”

“cond(x/A) and linkage(x,y) and not cond(y/B) ==> inconsistent”

• If there is an object x of kind A fulfilling some condition
 and x is linked to some object y of kind B then
 some condition on y must hold

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 127

Balancing DFD vs. ERD

“(BR1) Each data store must be associated to an entity type or relationship type
and vice versa.”

Store ObjectType
withType ERD notationDFD notation

EntityType RelationshipType

Store in Class with
 constraint
 br1a: $ forall s/Store exists o/ObjectType (s withType o) $;
 br1b: $ forall o/ObjectType exists s/Store (s withType o) $
end

• Balancing rule as constraint would disallow any data store without an object type and any
 object type without a store

M2:NL M2:NL

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 128

Balancing rules as query classes

QueryClass StoreWithoutType isA Store with
 constraint
 br1a: $ not exists o/ObjectType (~this withType o) $
end

QueryClass ObjectTypeWithoutStore isA ObjectType with
 constraint
 br1b: $ not exists s/Store (s withType ~this) $
end

• The solution with the query classes is preferable because it allows to represent
 incomplete models, e.g. a DFD with data stores that have not yet been associated
 to data types

• Models not violating the balancing rules generate empty answers (‘nil’) to both queries
 displayed above

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 129

Balancing DFD

“(BR2) Any process must have at least one input and one output.”

QueryClass ProcessLacksInput isA Process with
 constraint
 br2a: $ not exists n/DFD_Node (n dataflow ~this) $
end

QueryClass ProcessLacksOutput isA Process with
 constraint
 br2b: $ not exists n/DFD_Node (~this dataflow n) $
end

• The corresponding balancing rule on data stores can be realized analogously

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 142

Balancing rule: Each relationship type must have at least one role

RelationshipType in Node with
 connectedTo
 role: EntityType
 constraint
 br1: $ forall r/RelationshipType exists e/EntityType
 (r role e) $
end

hasDept in RelationshipType end

• ‘worksFor’ fulfills the balancing rule but the subsequent relationship type does not:

• Note that we (the method engineers) decide on the balancing rules that we want to enforce!
• We will see in the section on software process models that we can also specify
 when we want to check the rules.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 143

Balancing rules as queries

• If a balancing rule is formulated as a constraint, then we are not able to enter
 a model to the repository which violated the balancing rule.

• This is sometimes inconvenient because modeling is a process which ends with
 a ‘consistent model’ but we would like to work with incomplete, inconsistent models
 in between.

• Solution: Formulate the balancing rule as query classes

BR1_violator in QueryClass isA RelationshipType with
 constraint
 br1: $ not exists e/EntityType (~this role e) $
end

negate the ‘positive’ constraint in order
to find the violators of balancing rule BR1

• This trick would allow violations of BR1 while we can ask at any time which parts of
 the ERD-advanced model are inconsistent!

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 144

BR1_violator in QueryClass isA RelationshipType with
 constraint
 br1: $ not exists e/EntityType (~this role e) $
end

forall ~this/RelationshipType
 not exists e/EntityType (~this role e)
==> (~this in BR1_violator)

Deductive rule corresponding to the query class

forall r/RelationshipType
 exists e/EntityType (r role e)

is negation of the 'positive' constraint

Negated form returns violators of the positive form

“return those
relationship types
that violate the
'positive' constraint”

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 149

Dynamic view
on X

Static view on
X

balance!

Multiple models means partial viewpoints

Organizational
 view on X

balance!

 Each partial model contains only statements about X that are of interest in
 the partial model
 We somehow “tear” the artifact X into parts that are interrelated, i.e. that are
 connected by means of balancing rules
 So, a major ingredient of a ‘method’ are the balancing rules that control how
 the partial models are interrelated

Questions: How can we plan suitable notations for the perspectives and their
balancing rules???

balance!

Artifact
 X

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 150

Event
Concept

Activity
Concept

Example: the DataConcept in the Yourdan method

DataConcept

Store ObjectType

br1

DFD_Model

br2

in

containsStore
ERD_Model

containsType

EntityType RelationshipType

Dynamic view
on data

Static view
on data

br1: any data store in a DFD model must be connected to an object type in the ERD model

br2: any object type in the ERD model must be connected to a data store in a DFD model

 the classes ‘DataConcept’, ‘ActivityConcept’ etc. replace the more generic concept Node,
 i.e. we construct a richer Notation Definition Level!

isA

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 158

DFD_Model
Control
Process

(contains)

Activity
Concept

Activities in DFD,STD models

StateSTD
containsStatespecifies

Model

 This is similar to the previous situation. We will demand that any control process
 has an STD as specification and vice versa.

 Note that the component symbol ‘State’ of STD are not directly linked to a DFD.

DFD notation STD notation

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 161

Creating multiple perspective methods

Goal: develop a new method with specialized modeling languages
together with their balancing rules

Steps:

1. Develop a suitable “rich” notation definition level (not just “nodes plus connections”)
 which defines what kind of notations we are looking for

2. Derive perspectives by selecting parts of the concepts of the notation definition level

3. Instantiate these perspectives to obtain notations for them (one per perspective).

4. Balance the notations for the different perspectives.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 162

CASE study: Modeling notations for analyzing business processes

Setting:

Organizations (like companies) do their business by assigning tasks among their
employees. Those employees (‘agents’) send documents (‘objects’) to each other
that are needed to fulfill the tasks. Tasks have a precedence order.

We are especially interested in the analysis of certain “undesired” business processes,
e.g. an employee sends a document to another employee, however this employee
never has received a task which requires that document

Our mission:

Find a suitable collection of modeling notations to represent and analyze such
situations.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 163

Step 1: Notation definition level

Task

Agent

Object

requests

gets

puts

with

delivers
with

 This notation definition level introduces the three key concepts mentioned in
 the case study. It encodes that we will be interested in modeling languages for
 the following kind of statements:
 - Agents requests each other to do a certain task.
 - Tasks have precedence order (“before”). They fetch (“get”) objects and they
 create (“put”) objects.
 - Agents send objects to each other (“delivers”).

before

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 164

Step 2: Derive Perspectives

Task

Agent

Object

before

requests

gets

puts

with

delivers
with

Task

Agent
requests

with

Agent

Object

with

delivers
Task Object

gets

puts
+ +

=

Notation definition level

Task request perspective Task behavior perspective Object flow perspective

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 165

Step 3.1: Notation definition for tasks requests

BusinessFunction

Person

delegates

toDo

Task

Agent
requests

with

in

 In the notation for task requests, we use a special
 node type “Person” for the agents. It is identified
 by the little person icon.

 Tasks will be called “Business function” in our notation.

The notation can be adapted to the desired natural
language (here: English). Note that the perspective
is independent from the notation: it has generic terms
for the kind of concepts.

In the example, we instantiate just one notation class
per perspectice class. In general, we can have multiple
instances. Moreover additional link types are possible
that are not represented in the NDL.
Yourdan: dataflow is not in the richer NDL.

in

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 166

Step 3.2: Notation definition for task behavior

Task Object
gets

puts

Process Data
reads

writes

 In the task behavior perspective, we
 decide to label tasks “process” and
 object “data”. This resembles the DFD
 notation (though it is not the same).

Note that the people who write models
for task/process behavior may be
different from those who define the
models for the task requests!inin

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 167

Step 3.3: Notation definition for object flow

Department

Document

content

mails

Agent

Object

with

delivers

 The notation for the object flow completes
 the instantiation of the perspectives.
 Here, the agents are departments.

Obviously, we want to express here that only
departments send “official” documents to each
other.

Note that the concepts Agent, Task, and Object
appear in different flavor in the notations.
This can also be observed in Yourdan’s
collection of notations:

 Data stores are not the same as entity/relationship
 types but the both model the same data concept!

in

in

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 168

Step 4: Balance multiple viewpoints on notation definition concepts

Agent

Department Person
memberOf

Agents are regarded as “departments”
in the one perspective and as “persons”
in the other. Here, we can connect the two
by a “memberOf” link. This is a kind of
“partOf” relationship

Task

Process BusinessFunction

contains

As we know that business functions are
passed between persons, we can interpret
the link to “process” as being an implemen-
tation relationship: a piece of software
implements a business function or supports
it.

Object

Data Document

implements

We can interpret “documents” as physical
objects (files, paper) which contain data
objects. When mailing a document between
departments, the content is not essential.
It becomes essential when a process
manipulates its data.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 169

Balancing rules for the new method

 We limit ourselves to balancing rules that range over multiple notations

BR1: Whenever a person receives a request to perform a business function,
her department must have received the documents containing all the data
that are read by all the process that implement the business function!

Department Person
memberOf

Process BusinessFunction

implements

contains

Data

Document

toDo

delegates

reads

content

mails

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/4047690

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 170

Strategy for designing the balancing rule

Many balancing rules including the example have the form

A-part B-part

A(X) B(X,Y)

x y

notations A1,A2,... notations B1,B2,...

forall X A(X) ==> exists Y B(X,Y)

describes a pattern of
objects present in models
of A1,A2,.. (“reach y from x”)

demands a pattern of
objects present in models
of B1,B2,.. (“reach y over another path”)

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 171

dept pers
(memberOf)

proc bf

(implements)

(contains)

dat

doc

(toDo)

del

(reads)

aMail

(content)

forall del/Person!delegates pers/Person bf/BusinessFunction
 proc/Process dat/Data
 To(del,pers) and (del toDo bf) and (proc implements bf) and
 (proc reads dat)
==> exists dept/Department aMail/Department!mails doc/Document
 (pers memberOf dept) and To(aMail,dept) and (aMail content doc) and
 (doc contains dat)

A-part

B-part

...
...

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 181

The Zachman Framework

● Best-known example of a development framework; features 30 (!) modeling languages
 but many have rather simple incarnations (e.g. goal list=textual list of goals)
● Many balancing rules and mapping rules to be expected but not formalized in the framework

*) im
ag

e fre
e ly li ce

ns ed
 from

 W
ik ipe

d ia:Z
a

ch
m

an
 F

ra
m

ew
ork

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 182

Patterns for cross-notational links

Pattern 1: The hasParts link (called “model explosion” in MetaEdit+)

X Y

notation 1

M2

notation 2

hasPart

x y1

model including x

M1

model for x

hasPart

y2

y3

The model for x defines the element 'x' that is used on the left hand side.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 183

Pattern 1: Examples
● BPMN: the decomposition of a task from a high-level process model to
 a lower-level process model

● Relational data model: the schema of a database as a set of table definitions

● The source code of a class occurring in a class diagram

● Yourdan: the STD being the specification of a control process occurring in a DFD

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3825827/pattern1.gel

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3825814

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 184

Pattern 2: The mapping to a more concrete representation

S

D

notation 1 (specification)

M2

mappedTo

s

d

model with s
at a specification
level

M1

model with d (an implementation of s)

mappedTo

notation 2 (implementation)

Typical: when the whole is mapped, then also its parts (e.g. mapping of an ER model
to relational schema implies that all elements of the model are mapped)

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 185

Pattern 2: Examples

● the relational schema mapped from an ERD model

● a process specification mapped to program code

● an application system implementing a business task (ArchiMate)

The target of the mapping (the implementation) is about the same object
but at a more concrete level, in particular certain design choices can be made
to implement the source (specification).

Besides one-to-one, the mapping can also be one-to-many, many-to-one,
and many-to-many.

See also: model transformations

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 186

Pattern 2: Demo ArchiMate example

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3822537

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3920090/archisurance.gel

http://conceptbase.sourceforge.net/userManual77/

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 187

Pattern 3: A cross-reference to neighbor notation

A B

notation 1

M2references

a b

Model 1

M1

notation 2

Typical: Notaion 1 focusses on a limited number of constructs and has outsourced
referenrec constructs to a neighbor notation. Both must be seen together and
could also form a joint notation (notation 1+2).

references

Model 2

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 188

Pattern 3: Examples

● goals (goal notation) reference actors (resource notation)

● tasks (process modeling notation) reference organizational units

● a business service complies to a business rule

The cross-reference typically comes with a multiplicity constraint line 1..1
or 1..* on one or both of the reference ends. For example, a task in a business
process must have an associated organizational unit that is responsible for
its execution.

The reason to split the modeling task into multiple notations is for pattern 3
sometimes just pragmatic e.g. to limit the number of constructs per notation,
or to have only elements in a notation that can be mapped to another notation,
e.g. map a process model to a simulation model.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 189

Pattern 4: Interface classes

A B

notation 1

M2
references

a b

Model 1

M1

notation 2

Special case of pattern 3: The abstract class R is located in notation 1 but has
subclasses in other notations such as B in notation 2. There can be several such
subclasses distributed over multiple notations. Advantage: Notation 1 is
more self-contained. It is also easier to plug-in new constructs like B without needing
to change notation 1.

references

Model 2

R

isA

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 190

http://conceptbase.sourceforge.net/cross-notations.html

Pattern 4: Examples

● the feedsInformation/producesInformation links from BusinessFunction
 to InformationObject in

Note that the subclass ERD stands for an Entity-Relationship Diagram. Hence,
information objects can be instantiated by ERDs.

● the cross-notational links in EKD/4EM (see next slide)

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 191

4EM: linking perspectives via subclasses

4EM (formerly also named EKD) is set of enterprise modeling notations that
mostly focus on the business layer. Its particilar strength is the strong linkage
between the perspectives.

4EM Perspectives:

1) GM Model: Goals, Cause/Effect, Threats, Problems, ...
2) BPM Model: Processes, Resources, ...
3) ARM Model: Actors, Roles, ...
4) CM Model: Concepts, Attributes
5) TCRM Model: Technical components, IS components, requirements
6) BRM Model: Business rules

All perspectives are related. In particular GM and BRM can link to most other perspectives.

See also:
Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M. : Enterprise Modeling - Tackling Business Challenges with the 4EM Method.
Springer, 2014.

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 192

4EM: demo its specification in ConceptBase

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/d3827551/goal-relations.gel

This is an example of pattern 4 (interface classes)

http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3821866

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 193

Analyze the 4EM specification

Since the 4EM specification in ConceptBase is just “data”, it can be queries.
For example, to find out which constructs from other modeling notation
are used in a given notation, e.g, to which foreign constructs does the
goal modeling notation link to:

ImportedConstruct in GenericQueryClass isA NodeOrLink with
 computed_attribute,parameter
 notation : Notation
 constraint
 isOutside: $ exists n/NodeOrLink
 (notation includes n) and (n link_sym this)
 and not (notation includes this) $
end

any link

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 200

Integration with ADOxx

● ConceptBase used as back-end to ADOxx
● Integrity constraints can be defined for Meta2 model (does not change),
 meta model (per modeling language e.g. ER, BPMN, ...), and even
 for domain models

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 201

CLASS with
 attribute,single,transitive,reflexive,antisymmetric
 inheritance: CLASS
end
RELATIONSHIP with
 attribute,single,necessary
 source: CLASS
end
RELATIONSHIP with
 attribute,single,necessary
 target: CLASS
end
InheritanceRule in Class with
 rule
 r1: $ forall C,D/CLASS x/Proposition
 (C inheritance D) and (x in C) ==> (x in D) $
end

EoR in ABSTRACT,CLASS end
hasAttribute in RELATIONSHIP with
 source
 source: EoR
end
hasAttribute in RELATIONSHIP with
 target
 target: ATTRIBUTE
end
ATTRIBUTE in CLASS end
ENTITY in CLASS with
 inheritance
 super: EoR
end
RELATION in CLASS with
 inheritance
 super: EoR
end
RELATES in RELATIONSHIP with
 source
 source: RELATION
end
RELATES in RELATIONSHIP with
 target
 target: EoR
end

Fixed
Meta2 Model of
ADOxx
translated to
ConceptBase

Defined
Meta Model of
ER from ADOxx
translated to
ConceptBase

More details:
http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3869501

This meta model is created in step “1:define”
by ADOxx Development Toolkit

(c) 2015-2017 M. Jeusfeld, Creative Commons CC-BY-SA 4.0 202

Thank You!
Herzlichen Dank!
Dank u wel!
Tack så mycket!

Manfred Jeusfeld
conceptbase.cc/mjf

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 33
	Slide 34
	Slide 35
	Slide 43
	Slide 44
	Slide 45
	Slide 50
	Slide 54
	Slide 70
	Slide 89
	Slide 92
	Slide 93
	Slide 95
	Slide 96
	Slide 97
	Slide 109
	Slide 110
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 142
	Slide 143
	Slide 144
	Slide 149
	Slide 150
	Slide 158
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 181
	Slide 182
	Slide 183
	Slide 184
	Slide 185
	Slide 186
	Slide 187
	Slide 188
	Slide 189
	Slide 190
	Slide 191
	Slide 192
	Slide 193
	Slide 200
	Slide 201
	Slide 202

