
www. .org

Bee-Up
Handbook v1.3

Published: 2017-08-08

Authors: Patrik Burzynski, Dimitris Karagiannis

General information
This Handbook is written for Bee-Up version 1.3 based on the ADOxx 1.51 platform. The Bee-Up tool
enables modelling according to the following languages and techniques:

 Business Process Model and Notation 2.0 (BPMN),

 Event-driven Process Chains (EPC) and extended EPCs (eEPC),

 Entity-Relationship (ER), and

 Unified Modeling Language 2.0 (UML)

 Petri Nets (PN).

If you should encounter problems, have questions or feature requests which are not covered yet, you can
also contact us directly:

 Patrik Burzynski (patrik.burzynski@univie.ac.at)

 Prof. Dimitris Karagiannis

Installation
The Bee-Up tool requires a Windows operating system (XP, Vista, 7, 8, 8.1 or 10). To install it on a different
operating system please use virtualization software (e.g. VirtualBox or VMware)2 and a windows license3.

To install the Bee-Up tool follow these steps:
1. Download the ZIP-File containing the installation package from OMiLAB.
2. Extract the contents to a folder.
3. Run the setup.exe from the extracted folder.

The setup first informs about prerequisites that will be installed automatically. This includes required
frameworks (e.g. .NET) and the creation of a SQL Server instance where necessary. Once those tasks are
finished a wizard will guide you through the remainder of the installation.

Note that if the setup automatically created a SQL Server instance, it is called ADOXX15EN and has set the
initial ‘sa’ password to ‘12+*ADOxx*+34’ (without the ‘ ’). If you want to use an already available SQL
Server database instance, it has to use “Mixed mode” for authentication. Should you no longer remember
the ‘sa’ password: help on how to reset the ‘sa’ password can be found at the ADOxx.org community.

By default Bee-Up 1.3 will create and use the database with the name ‘beeup13’ (without the ‘ ’), unless a
different one has been specified during the installation (for example when ‘beeup13’ is already used by
something else) .

Some additional functionality provided by Bee-Up (beyond simple modelling, e.g. RDF Export) also requires
a functioning Java 1.8 installation. A download link and installation instructions can be found at
https://java.com.

1 http://www.adoxx.org/
2 Obtainable from https://www.virtualbox.org/ or http://www.vmware.com/ respectively
3 As a student of computer science on the University of Vienna you can get access to different versions of windows at
http://cs.univie.ac.at/students/info/software/msdn/

mailto:patrik.burzynski@univie.ac.at
http://austria.omilab.org/psm/content/bee-up/download
http://www.adoxx.org/live/faq/-/message_boards/message/19635
https://java.com/
http://www.adoxx.org/
https://www.virtualbox.org/
http://www.vmware.com/
http://cs.univie.ac.at/students/info/software/msdn/

Bee-Up - Handbook v1.3

 2

Things to watch out for before/during/after installation

Before the installation
1. Language for non-Unicode programs: Make sure that the “Language for non-Unicode programs” of

the operating system is set properly. This setting can be found in the “Control Panel” under “Region
and Language” in the “Administrative” tab, as shown in the picture below. Languages like English
and German are known to work for Bee-Up among others. Similar languages should most likely
pose no problem. Languages using characters which are very different from English (like Greek,
Persian or Chinese) can however pose a problem. If an error saying “The selected database does
not exist or has not been catalogued yet.” is encountered during the installation or an error like
“Database … does not exist!” pops up when starting the tool after the installation, then it’s most
likely due to this setting. In this case please uninstall the tool and the SQL Server instance
“ADOXX15EN”, change the setting and install Bee-Up again.
Alternative: It might also be possible to work with a different “Language for non-Unicode
programs”, which however requires a manual installation of the SQL Server instance. A detailed
step-by-step guide can be found at the ADOxx homepage (Download  Windows Installation Guide
 Installation of different collation database (Non-Latin Database Instance)). Please note that this
has not been tested by our developers for Bee-Up.

During the installation
1. Installation of SQL Server instance fails: It is possible that the installation of the SQL Server

instance fails, typically with an error message like “Failed to install Microsoft SQL Server (instance
ADOXX15EN). Please check for errors and try again.”, in which case the tool will not be properly
installed. One of the reasons is that the SQL Server installer performs a check and the system
doesn’t meet the necessary requirements. One of the requirements is that a system restart is
possible. Sometimes a different application can block the system restart, leading to the problem. So
one possible solution is to close all other applications, restart the computer and then perform the

https://www.adoxx.org/live/installation-guide-15-other-collation

Bee-Up - Handbook v1.3

 3

installation. Another approach is to manually install the SQL Server instance beforehand. Detailed
descriptions for this can be found in the “dbinfo” folder (the PDF-files with “install” like “BOC-
Product_sqlserver_2008_express_install_en.pdf” are relevant, not “createdb”) and the folder
“SQLExpress” folder contains an installation file for the SQL Server. Please note that the “Instance
ID” MUST be “ADOXX15EN”!

2. Installation asks for standard administrator “sa” password: Sometimes during the installation a
popup can ask for the database standard administrator password (see picture below). Some users
reported, that after aborting the installation and restarting the computer the popup no longer
appeared. Alternatively, if the SQL Server instance has been created automatically by the
installation, then it has set the initial ‘sa’ password to ‘12+*ADOxx*+34’ (without the ‘ ’). Help on
how to reset the ‘sa’ password can be found at the ADOxx.org community (in the FAQ: “SA
Password during ADOxx Installation”).

After the installation
1. Database connection failed: Bee-Up uses a database to store all the information in the

background. Therefore during the installation an SQL Server instance is automatically created.
However, it can happen when starting the tool that an error is encountered with the message
“ADOxx could not connect to the database …! Please try again.” This can happen when the
database service is not running. Please make sure that the proper SQL Server service is running
(“SQL Server (ADOXX15EN)” in the services panel of Windows) and try starting Bee-Up again.

2. Loosing connection to database while tool is running: On some systems (especially when using
Windows 10) it can happen that the connection from Bee-Up to the database is lost, usually with an
error message like “Due to a database exception the connection has been closed …” This often
happens due to a longer inactivity which can lead to a connection time out. Unfortunately a
consequence of this is a loss of all the changes that have been made since the last save. It can
however often be prevented from happening by opening the “SQL Server Configuration Manager”
tool, selecting “Protocols for ADOXX15EN and disabling both “Named Pipes” and “TCP/IP” as shown
in the picture below.

http://www.adoxx.org/live/faq/-/message_boards/message/19635

Bee-Up - Handbook v1.3

 4

Uninstallation
Yes, it is also possible to uninstall Bee-Up if so wished or necessary. Please note that this will of course also
delete all the created models that are stored in the database. Therefore it is advised to first back up
everything from Bee-Up that should be saved using the Export functionality (see section “Exporting and
importing models”).

To completely uninstall Bee-Up, two things should be performed:

1. Uninstall the Bee-Up tool – This can simply be achieved through the systems control panel.
2. Uninstall the Microsoft SQL Server – Here the SQL Server instance used by Bee-Up (“ADOXX15EN”)

should be uninstalled, again using the control panel. IMPORTANT: This will also remove all the data
stored in all the databases of the SQL Server instance. If other ADOxx based tools have been
installed and use the “ADOXX15EN” instance, or other relevant data has been put there, then it is
not advised to uninstall the SQL Server instance, since it could break the other applications!

Bee-Up - Handbook v1.3

 5

Modelling with the Bee-Up tool

Tool overview
When first starting the Bee-Up tool you see a screen similar to the following one (without the numbers):

At the top is the menu bar with different menu items for direct access to some of the platforms
functionality. The numbered elements of the above picture are:

1. The Toolbar with icons as shortcuts for different functions. On the left side of the toolbar is the
component selection:

This changes which menus, menu items and toolbar icons are available. The two important
components are “Modelling” (left most icon) and “Import/Export” (right most icon). The current
section of this document focuses on the “Modelling” component, while the next will describe some
functionalities of the “Import/Export” component.

2. The Start Page is visible, showing recently opened models. The Start Page can be accessed through

the house icon in the Toolbar. Once a model is opened it will be shown instead of the Start
Page. This area is then referred to as the Modelling area.

3. The Modelling window shows the modelling objects and relations available for the currently
opened model (in the figure above none, because no model is open).

4. The Explorer window shows all folders (called model groups) and the models, stored in a model
group. Initially, model groups for all exercise sheets are preconfigured, accompanied by a testing
model group.

5. The Navigator window shows an overview of the currently opened model.

1.

5.

2.

4.

3.

Bee-Up - Handbook v1.3

 6

Creating a new model
In order to create a new model select the menu item “Model  New…” while in the “Modelling”

component (left most icon in the Toolbar).

This will open the dialog shown below (without the numbers):

In this dialog first select the appropriate filter for the model types (e.g. Entity-Relationship for ER-models),
either by using the graphic on the left side (1.) or the dropdown-list in the middle (2.). Afterwards, select
the desired model type from the list in the middle (3.). Then enter a name (mandatory) and a version
(optional) on the right side (4.). Finally, select to which exercise sheet (model group) the model should be
assigned4 (5.) and click on “Create”. Please use the appropriate model group for your case (i.e. if it is a
solution for a specific assignment, use the corresponding model group).

This will create an empty model of the selected modelling technique, store it in the selected model group
and open it, ready to be edited.

4 Or select „Testing“ (model group) when you are creating a model for testing purposes (e.g. to see how everything
works, play around, explore the tool etc.).

1. 2.

3.

4.

5.

Bee-Up - Handbook v1.3

 7

The picture above shows an example for a newly created and opened Entity-Relationship model. The
Modelling area (2.) now shows the empty Drawing area (a white canvas to drag & drop objects and
relations) instead of the Start Page. The Modelling window (3.) shows the available types of objects and
relations that can be used for ER modelling, e.g., Entity, Relationship, Attribute. The created model can also
be seen in the Explorer window (4.) under the selected exercise sheet (model group). The Navigator
window (4.) shows the complete model, enabling direct navigation and zooming, as well as the portion that
is currently shown in the Modelling area.

Editing the model
To edit a model it hast to be opened in the Bee-Up tool. The easiest way to open a model is to double click
on its name in the Explorer window. New objects can be added to the model by selecting the type of object
that should be added in the Modelling window and then clicking in the Modelling area where the object
should be placed. If necessary the Drawing area will be extended automatically. After adding a few objects,
the Modelling area could look like this:

2.

4.

3.

5.

Bee-Up - Handbook v1.3

 8

In order to connect objects with relations, first select the relation type from the Modelling window. Then
click in the Modelling area on the object that is the source (“starting point”) of the relation and then on the
object that is the target (“ending point”) of the relation. Certain types of relations can only be used
between specific types of objects (e.g. “has Attribute” always has to target an “Attribute”). The previous
example with some relations could look like this:

All objects can be moved in the Modelling area by selecting them and moving them accordingly. Some
objects can also be resized, which works similar to resizing windows in the operating system (drag the
side/corner when it is selected). For both the “Edit” function has to be selected in the Modelling window
(looks like the default mouse cursor). After creating objects and relations you can quickly switch back to
“Edit” by pressing the right mouse button. It is also possible to move/resize several objects at once by
selecting them first (draw selection box around them, SHIFT+Click, CTRL+Click) and then performing the
move or resizing. The difference between SHIFT+Click and CTRL+Click is that using SHIFT will select the
object and all of the objects it contains if it is a container (like a “Package”, “State”, “Combined Fragment”,
“Lifeline” etc.) while using CTRL will not. This is useful when a container should be moved with all of its
contents at once.

Adding edges to relations
It is also possible to add bend points to relations. Those force the relation to be drawn through that point
and can increase readability of the created models. The following image shows a relation with six bend
points (small white rectangles):

Bend points can be added either during the creation of the relation, or afterwards. To add bend points
during the creation first click on the source, then click on the desired points in the Modelling area where a
bend point (i.e. an edge) should be drawn, and finally click on the target object. To add them after the
relation has been created, select the relation first and then click and drag a point of the relation (that isn’t
already a bend point) to the desired place on the Modelling area.

The source or the target of a relation can also be changed by selecting the relation and then clicking the
yellow circle at the beginning or the end and dragging it to the new object that should be the source or
target. The green diamond that is visible when a relation is selected can be used in many cases to move the
text that is visualized next to it (e.g. the cardinality of the “Links” relation; ‘m’ in the figure above).

Bee-Up - Handbook v1.3

 9

Editing attributes
All objects, models and relations can have editable attributes, which can also influence their visualization in
the Modelling area (e.g. weak entities have a double outline instead of a single one). Those attributes can
be accessed by double-clicking on the object or relation (or selecting it and then pressing Enter). This opens
up the ADOxx Notebook, which contains the attributes that can be edited. To access the attributes of a
model it has to be opened first and then select the menu item “Model  Model attributes” or press
ALT+Enter. The following picture shows an example of a Notebook:

The attributes take up the largest portion of the Notebook and are categorized in different tabs, available
on the right side of the Notebook. Depending on the attribute type different editors for the attribute value
are available (e.g. single-line text field for the Name, multi-line text area for the Description, checkbox for
the Weak entity etc.). For some attributes an alternative editor can be accessed through the button. Also

additional information is available for most of the attributes and can be accessed by clicking on the icon.
A similar icon can be found at the top right (underneath the X for closing the window), which provides

information about the type of the object. The two buttons at the lower right are an alternative to
switching between the different categories. They are also used to switch between pages of one category, in
the case that more attributes are available than can be shown in the Notebook window.

There are two special types of attributes that have to be described in more detail:
1. Inter-model references – they allow to link (reference) to one or several other objects or models

and have three special icons: . The first one (+) allows to add new references, while the
second one (X) removes the selected references. The third one () is like a hyperlink that jumps to
the referenced object. Often when the attribute value is visualized it also works as a hyperlink in
the Modelling area.

2. Tables – they allow to store more complex attribute values in a structured way. They also have two

special icons: . The first one (+) is used to add a new row at the end and the second one (X)
removes the selected rows. Note that in order to select rows the number on the left side has to be
clicked. The context menu also provides several options to handle rows in a table (e.g. insert row,
move row, etc.)

It is also possible to edit some of the attribute values that are visualized in the Modelling area without
using the Notebook. For this simply select the object and then click on the visualized attribute value (e.g.
the name: “Entity (ER)-317265”). Note that this prevents opening the Notebook although the attribute is
being edited.

Bee-Up - Handbook v1.3

 10

Exporting models
The tool also provides functionality to export the created models in different formats. Some of those will be

described here. Most of them are available in the “Import/Export” component ()

Creating a graphic from a model
It is possible to create a graphic of the currently opened model and store it in a file using the provided

“Generate graphics” functionality (icon in the Toolbar available when using the “Modelling”
component). This opens a dialog showing the region of the model for which the graphic will be created as
well as options to scale the created picture and to either save it in a file (with different formats available) or
copy it to the clipboard. Clicking on the “Generate” button will finish the process.

The region can be set beforehand by holding down the ALT key and click-and-dragging a box in the
Modelling area with the mouse. This will create a teal rectangle (that can also be resized) showing what
region will be used for generating the graphic. The following picture shows the dialog for the previous
example model, where a fitting region has been set:

Exporting the exercise
It is also possible to export an entire exercise at once. This can be achieved by using the menu item “Model

 Export Exercises” (or using the icon in the Toolbar). This will show a dialog where the model group
containing all of the solutions for the exercise can be selected. Afterwards a new dialog asks for a folder
where the results should be stored. Once it is finished a message will inform you about it.

This functionality exports all of the models contained in the selected model group or one of its descendent
sub-groups in ADL format and also creates individual graphic files for all of the models. The creation of the
graphic can sometimes fail when the name and/or version contain a character that is not supported by the
operating system as a filename5. IMPORTANT: It also removes empty space from the right and the bottom
in the drawing area (in the Modelling area) AND saves the model before generating the graphic.

Exporting and importing models
One or several models as well as model groups can be exported to/imported from either the ADL format
(proprietary) or XML format by using the according menu items in the “Model” menu (e.g. “Model  XML
export (default)…”).

For the export a simple dialog is show where the models and/or model groups are selected at the top. The
middle of the dialog contains some checkboxes to control what should be exported (e.g. “Including
models”, “Including model groups” etc.) and at the bottom the file is specified where the models/model
groups should be exported to. The export is started by clicking on the “Export” button and at the end a
success or error message is shown.

5 Common ones like „:“, „/“, „*“ etc. are replaced by a „-" for the file name.

Bee-Up - Handbook v1.3

 11

For the import there are several tabs available. In the “File selection” tab the file containing the
models/model groups is selected. The “Model options” tab provides some choices on how to deal with
collisions (e.g. what to do when two models have the same name). The last tab “Log file” allows logging the
process in a file. After everything is selected click on the “OK” button. This will prepare the data from the
previously selected file and open another dialog. Here the left side shows which models and/or model
groups have been found in the file and you can select which of those should be imported. On the right side
select into which model group the contents should be imported and click on the “Import” button. At the
end a success or error message is shown.

Exporting models as RDF
A new function in Version 1.1 adds the possibility to export one or several models in RDF Format. This can
be simply accessed through the menu item “Model  RDF Export”. The first dialog asks which models
should be exported. Here either directly the models or entire model groups can be selected. Afterwards a
file selection dialog will ask where the RDF data should be stored and allows a choice of different formats
(.trig is recommended). A third dialog will ask for a base URI to be used in the identifiers as a prefix. Here it
is recommended to use a valid URL without the fragment (for example http://www.omilab.org/example#
or http://www.example.net/#). It is not necessary for the URL to be actually used (i.e. the URL can return
an error code like 404), just that the URL is valid. Once it is finished a message will inform you about it.

With Version 1.2 additional attributes have been added to (almost) all elements and models to enhance the
RDF Export. These are found in the “RDF properties” tab of the Notebook. The “URI” attribute allows
specifying a specific URI to be used for the element/model instead of automatically generating a URI. The
“Additional Triples” table allows specifying additional triples (Subject, Predicate and Object) that will be
added to the graph, where one row represents one triple. If a cell is left empty in the “Additional Triples”
table, then it will be substituted with the URI of the element/model it is located in. Note that the values
provided in those attributes will be treated as is as a complete URI (ignoring prefixes etc.). Therefore, it is
necessary to enter the entire URI. Also with Version 1.2 the names of elements and models are exported
explicitly as rdfs:label statements.

http://www.omilab.org/example
http://www.example.net/

Bee-Up - Handbook v1.3

 12

Additional hints and information

Specific information for BPMN modelling
The BPMN implementation provides concepts to describe processes, as well as for describing input, output
and execution of “Tasks”. Two different modes are available, which limit the available concepts. By default
the “BPMN 2.0” mode is selected, which contains the typical BPMN concepts. However, the mode can be
changed (through the menu “View  Mode”) to “Simulation”. This mode further adds concepts which are
necessary to perform simulation of processes in the tool (e.g. converging gateways as their own types). The
following picture shows the two modes and which types of elements they use:

The majority of BPMN should be straight forward and some constraints are enforced by the tool (e.g. “Start
Events” cannot have any incoming “Subsequent” relations). However, due to certain platform restrictions
the Gateways (Exclusive, Inclusive, Parallel etc.) are handled a bit differently6. In the standard BPMN mode
the Exclusive Gateway is available as its own type (“Exclusive Gateway”), however the Inclusive and Parallel
Gateway are modelled through the “Non-exclusive Gateway”. The type (Inclusive, Parallel or Complex) is
then set through the attribute “Gateway type” (in the Notebook)7.

Previously the Intermediate event was split into two different types: “Intermediate Event (boundary)” and
“Intermediate Event (sequence)”. Since Version 1.1 the two have been merged into one and are
distinguished through setting the “Attached to” Attribute. If the attribute has a value it will be considered
on the Boundary of the set “Task”. A new Mode has been added called “Deprecated”, which allows the use
of the two old Intermediate events in order to not destroy previously created models. Those events can
easily be transformed into the new “Intermediate Event” by right clicking on them and selecting “Convert
 Intermediate Event (BPMN)”.

Certain types of objects can be converted into other types (e.g. “Exclusive Gateway” to “Non-exclusive
Gateway”) by selecting them and then using “Conversion” in the context menu. An object will become
greyed out and cannot be selected, if it is converted to a type that is not available in the current mode. To
transform it back (or delete it or change it etc.), simply change the mode to one that makes use of the type
(e.g. “All modelling objects”). The picture below shows the available options for converting the “Exclusive
Gateway”:

6 This is due to the way simulation is handled by the platform.
7 “Simulation” mode additionally has a “Non-exclusive Gateway (converging)”, which is necessary for the simulation.

Bee-Up - Handbook v1.3

 13

The availability of some attributes (in the Notebook) is dependent on the values of others. This is to prevent
setting wrong values or changing irrelevant attributes. For example the available “Triggers” of a “Start
Event” depend on its “Type” to prevent wrong selections. Another example is the “Loop condition
(standard)” attribute of a “Task”, which is only available when the “Loop type” is set to “Standard”
(otherwise it is irrelevant).

The relation “Subsequent” has an attribute “Visualized values”, which controls which attribute values are
shown. Should the desired value not be shown on the drawing area (e.g. “Transition condition”) then it
might be because of the “Visualized values” attribute. “Subsequent” is also used in several different model
types (e.g. EPC, UML Activity Diagram). Therefore it also contains attributes used in those model types.
They are however grouped in their own categories (e.g. “UML properties”).

For many different types of objects (e.g. “Start Event”, “Exclusive Gateway” etc.) the visualization of the
name can be controlled through the attribute “Show name”. In some cases this is a simple choice if the
name should be displayed (e.g. “Start Event”). In other cases more options are available (e.g. “Exclusive
Gateway”).

Version 1.2 also added the option to further describe Service Tasks through Petri Nets or Flowcharts using
the “Automated service details” attribute. The attribute should reference the starting point in the Petri Net
or Flowchart.

The following picture provides some detailed information about the implementation of BPMN in Bee-Up.
More specifically it shows an excerpt of how the BPMN meta-model is implemented. Certain parts are
provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for process
simulation. The “…” abstract class is used to represent complex generalization structures in the meta-model
in a simplified manner.

Bee-Up - Handbook v1.3

 14

Specific information for EPC modelling
The EPC implementation provides the core concepts from Event-driven Process Chains to describe
processes (“Event”, “Function”, logical operators), as well as some additional ones for describing input,
output and execution of “Functions”. Different modes can be selected, which limit the available concepts.
By default the “EPC” mode is selected, which contains “Events”, “Functions” and the basic logical operators
from EPC (also some additional “general” concepts). However, the mode can be changed (through the
menu “View  Mode”) to “eEPC” or “Simulation”. “eEPC” (extended EPC) additionally contains
“Organizational units”, “Information objects” and relations for those new object types. The relations for
denoting inputs and outputs for “Functions” are implemented as separate types. “Simulation” mode
further adds concepts which are necessary to perform simulation of processes in the tool (e.g. “Start Event”
which explicitly denotes the start of the process). The following picture shows the three modes and which
types of elements they use:

The majority of EPC should be straight forward and some of the constraints of an EPC model are enforced
by the tool (e.g. between two “Functions” there has to be an “Event”). However, due to certain platform
restrictions the typical logical operators (XOR, OR, AND) are handled a bit differently8. In the basic “EPC”
and “eEPC” the XOR operator is available as its own type (“XOR operator”), however the AND and OR
operators are modelled through the “Parallel fork”. The type (AND or OR) is then set through the attribute
“Type” (in the Notebook)9. In “EPC” and “eEPC” mode the “Parallel fork” is used both for splitting and
merging paths.

The relation “Subsequent” has an attribute “Visualized values”, which controls which attribute values are
shown. Should the desired value not be shown on the drawing area (e.g. “Transition condition”) then it
might be because of the “Visualized values” attribute. “Subsequent” is also used in several different model
types (e.g. BPMN, UML Activity Diagram). Therefore it also contains attributes used in those model types.
They are however grouped in their own categories (e.g. “UML properties”).

Certain types of objects can be converted into other types (e.g. “Event” to “Start Event” or “End Event”,
“XOR operator” to “Parallel fork” etc.) by selecting them and then using “Conversion” in the context menu.
An object will become greyed out and cannot be selected, if it is converted to a type that is not available in
the current mode. To transform it back (or delete it or change it etc.), simply change the mode to one that
makes use of the type (e.g. “All modelling objects”). The picture below shows the available options for
converting the “XOR operator”:

8 This is due to the way simulation is handled by the platform.
9 “Simulation” mode additionally has a “Parallel merge”. This distinction between fork and merge is necessary for the
simulation algorithm.

Bee-Up - Handbook v1.3

 15

Version 1.2 also added the option to further describe Functions through Petri Nets or Flowcharts using the
“Automation details” attribute. The attribute should reference the starting point in the Petri Net or
Flowchart.

The following picture provides some detailed information about the implementation of EPC in Bee-Up.
More specifically it shows an excerpt of how the EPC meta-model is implemented. Certain parts are
provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for process
simulation. The “…” abstract class is used to represent complex generalization structures in the meta-model
in a simplified manner.

Specific information for ER modelling
The ER Model implementation provides the general concepts used (“Entity”, “Relation” and “Attribute”) as
well as the necessary connectors10 (“Links” and “has Attribute”) among other common elements (“Note”,
“has Note” etc.). Restrictions are set for the “Links” connectors to prevent creating wrong models. A “Links”
connector has to start from either a “Relation” or a “Relation Node” and target an “Entity”, a “Relation” or
a “Relation Node”. So it is necessary to click first on a “Relation” or a “Relation Node” when creating a
“Links” connector. Cardinalities for the relation are also set on the “Links” connector. Note that for Chen-
Notation the “m” is used for anything else than 1, meaning it should be used to represent Cardinalities like
“m”, “n”, “o” etc. Think of “m” not as a specific number, but as “many”. What notation is visualized in the
model can be set through the model attribute “Used Notation (ER)” found in the “ER properties” tab.

The finer details are controlled through the attributes found in the notebook, which in some cases also
influence the visualization (notation) of the objects. For example to show a “Weak Entity” use a normal
“Entity” and check its “Weak entity” attribute in the Notebook. Also to specify the “Relation” that indicates
on which stronger entity it relies use a “Relation” and set its “Relation type” attribute to “Weak entity
dependency”.

10 In this one section we refer to the lines as “connectors” instead of “relations” to not confuse them with the objects
of type “Relation”

Bee-Up - Handbook v1.3

 16

Should a “Relation” be between the same “Entity” (e.g. Person knows Person) then use the “Relation Node”
on one of the connections. For a binary relation (e.g. Person knows Person): First connect the “Relation” to
the “Entity” directly, then connect the “Relation” to a “Relation Node” and then connect the “Relation
Node” to the “Entity”. This is necessary because of how identifiers of connectors work (identified by their
type, their source object and their target object). An example can be seen below:

Functionality for creating SQL statements from an ER Model is also provided. It can be accessed through the
“Model” menu of the “Import/Export” component. A description with the quirks and details can also be
found in the same menu. The functionality uses the currently active model and will ask for a file to store the
created SQL code in. If the selection of a file is cancelled it will instead show the SQL code in a pop-up
window from where it can be copied to the clipboard. Version 1.2 added two SQL properties to “Attribute”:
1) one for directly entering the data type of the attribute and 2) to specify auto-increment (only works for
MySQL). Version 1.3 changed how to handle inheritance through “IS-A” relations. Two options are available
as Model attribute “IS-A Behaviour”: 1) the “old” style where the table is copied and 2) [now default] which
handles inheritance similar to Weak Entities.

The following picture provides some detailed information about the implementation of ER in Bee-Up. More
specifically it shows an excerpt of how the ER meta-model is implemented. Certain parts are provided by
the platform to allow specific functionality, like __D_container__ used to automatically derive “Is Inside”
relations.

Bee-Up - Handbook v1.3

 17

Specific information for UML modelling
UML and its implementation in the tool are big. Addressing all of the peculiarities would be difficult and
also a lot of text to read. Therefore, they are addressed in general and some examples are provided.

Notations11 are generally influenced by the attribute values that are specified for them (in the notebook):

 Most of the attributes that deal only with the visualization are located in a category called
“Presentation”. Examples for such attributes are “Color” (of the object background),
“Representation” (of text) and “Presentation” (of class details).

 The “Subsequent” relation and the “Activity edge” use the attribute “Visualized values” to control
which attribute values should be shown (e.g. Denomination, Transition condition, Weighting etc.).

 Relations often have an option on where the text should be shown, handled through a
“Representation” attribute. In general “above/below” value should be used for parts of relations
going horizontally and “left/right” value for parts of relations going vertically. As an example the
“Association” used in “Class / Object Diagrams” can have text in three parts: at the start, at the
middle and at the end. For the start and the end a different “Representation” value can be set. If
for example the association class starts going from the object towards the right (horizontal) and
then turns towards the bottom (vertical) then the “Representation start” should use
“above/below”, the “Representation end” should use “left/right”. In most cases the middle part
uses a notation that works well with both horizontally and vertically drawn relations.

 UML Specific attributes (e.g. “IsAbstract”, “Visibility” etc.) are usually located in a category called
“UML properties”. In some cases they are located in the “Description” category (e.g. the “Type” of
a “Final Node”) for quicker access or have their own category (e.g. “Properties/Operations” of a
“Class”). Some of them also influence the notation, like the “Final type” attribute of a “Final Node”
in an “Activity Diagram” or the “Properties” entered in a “Class”.

Certain relations, like the “Message” from a “Sequence Diagram”, have their sub-types controlled mostly
through the attributes. So the typical types like “synchronous call”, “asynchronous call” and “reply” are
handled through the “Message sort” attribute of the “Message” relation.

In order to draw several relations between the same two objects in the same direction (e.g. several
“Associations” between the same two “Classes”) the “Relation Node” has to be used. For every additional
relation beyond the first one it is necessary to create two relations: one has to go from the source object to
a “Relation Node” and the other from that “Relation Node” to the target object. This is necessary because
of how identifiers of relations work12. For example when there are the classes “Employee” and
“Department” and two associations “works for” and “manager of” between the two classes. The “manager
of” association can go directly from “Employee” to “Department”. However, the “works for” association
has to be split in two: one association going from “Employee” to a “Relation Node” and another from the
same “Relation Node” to the “Department”. The attributes should also be split among those two relations
accordingly (i.e. the multiplicity for the “Employee” side of “works for” has to go to the first relation, the
multiplicity for the “Department” side of “works for” has to be in the second relation and the name can be
in one of those). The example can be seen below:

11 The look of an object on screen or on paper.
12 A relation is identified by its type, its source object and its target object. Duplicate identifiers are not allowed.

Bee-Up - Handbook v1.3

 18

There are also cases where the source and the target of a relation should be the same object (e.g. an
“Association” from a “Class” to the same “Class” or a “Transition” from a “State” to the same “State”). This
also requires a “Relation Node”, since the same object cannot be the source and the target of one relation.
For this case simply make a relation from the object to the “Relation Node” and then from the “Relation
Node” to the same object. For example when a relation “knows” should be from and to the class
“Employee” first create the “Relation Node”, then make an “Association” from “Employee” to the “Relation
Node” and then from the “Relation Node” back to the “Employee”. The example can be seen below:

In UML it is also sometimes necessary to have a relation which originates or targets another relation. Again
this is solved by using the “Relation Node”. Simply put the “Relation Node” on the relation that should be
the source or the target (this will split the relation in two) and use the “Relation Node” as the source or
target of the other relation. For example when the association “works for”, between “Employee” and
“Department” should be linked to a class “works for” to indicate it is an association-class (so it can contain
attributes like “working hours”): first put the “Relation Node” on the “works for” association and then
make the “is Associationclass” relation from that “Relation Node” to the desired “works for” class. The
example can be seen below:

The boundary of “Lifelines” should not overlap, due to the automatic assignment of “Execution
Specifications” based on being inside of a “Lifeline”. The exact boundary of an object is visible when the
element is selected and is represented by the thick-chequered line as seen in the picture below:

To create a “Composite State” (i.e. a “State” that contains other states) use the “State” type and set the
attribute “Number of regions” to a value larger than 0, depending on how many regions are available. A
simple example of a “Composite State” with only one region can be seen below:

In a UML Use Case Diagram it is possible to add constraints to “Extend” relations using two approaches:

Bee-Up - Handbook v1.3

 19

1. Use the “Condition” and “Points of extension” attributes of the “Extend” relation.
2. Create a “Constraint” object, place a “Relation Node” in the middle of the “Extend” relation and

then connect the “Constraint” to the “Relation Node” through the “has Constraint” relation.

In “Sequence Diagrams” it is sometimes necessary to show a time delay by drawing “Message” relations
diagonally. This is generally achieved by adding bend points to a relation. However, adding bend points can
be difficult since the tool tries to draw horizontal (and vertical) relations. Therefore the “Message” relation
contains an attribute called “Time delay”. Putting a check mark in this attribute will automatically add two
bend points to the relation. Those can then be moved and other bend points can also be added more
easily. Removing the check mark will also remove the bend points again. The two pictures below show a
“Message” relation with the two possible states of the “Time delay” attribute:

It is possible to leave notes and comments in the models by using the “Note” class and also assigning those
notes to any object using the “has Note” relation. The text displayed is specified through the “Description”
attribute of the “Note”. An example can be seen below:

The following picture provides some detailed information about the implementation of UML in Bee-Up.
More specifically it shows an excerpt of how the UML meta-model is implemented. Certain parts are
provided by the platform to allow specific functionality, like __D_event__ and Subsequent used for process
simulation (e.g. of Activity Diagrams). The “…” abstract class is used to represent complex generalization
structures in the meta-model in a simplified manner.

Bee-Up - Handbook v1.3

 20

Specific information for PN modelling
The Petri Net implementation provides the base concepts (“Place”, “Transition” and a connector called
“Arc”) as well as some additional ones for simulation and state storage. Tokens are modelled through the
“Tokens” attribute of “Place” and are also visualized in them through small black circles and a number if
there isn’t enough room to draw all tokens. “Transitions” are also categorized into “Hot” (drawn in red
color) and “Cold” (drawn in blue color with a black “epsilon” looking character) transitions which is handled
through the “Type” attribute. “Arcs” contain one attribute called “Weight” which is used to denote how
many tokens should be consumed/created by the attached “Transition”. The picture below shows the
different notations of a Transition:

When the conditions to fire a transition are met (i.e. enough tokens in all preceding places and enough
capacity in all succeeding places) then a “Fire” button will appear on the transition (see picture above).
Clicking on this button will fire the transition, meaning that the necessary tokens will be consumed in
preceding “Places” and new ones will be added to the succeeding “Places”. In Version 1.1 the “Arcs” have
been extended with additional “Ready behaviour” for their following transitions, which allows firing a
transition only when certain conditions are met without consuming any tokens. For more information
check the “Ready behaviour” attribute information of an “Arc”.

Bee-Up - Handbook v1.3

 21

To simulate the net a special concept called “Simulation Configurator” is used (see picture above). It
contains the configuration for a simulation run and is also used to start the simulation. The configuration is
handled through the attributes of the notebook. See the additional information available for each attribute
to find out more. The simulation can be started either by using the buttons on the drawing area or the
buttons in the notebook. Through them either one iteration, multiple iterations or a slow simulation with
delays between each iteration can be run. One iteration tries to fire all ready “Transitions”. Should there
not be enough tokens to fire all ready “Transitions” (e.g. several transitions requiring a token from a “Place”
that only has one) then the selected “Transition conflict strategy” will be employed.

It is also possible to store the current state of a Petri Net and later restore it using “State Storage” (see
picture below). In this context the state of the whole net is considered to be the amount of tokens in all the
known places. When a “State Storage” is first added to the model it will store the state at that time in its
attribute “Storage”. This stored state can also be manipulated manually through that attribute. The
notebook also provides two buttons: one to store the current state of the model (i.e. update the “State
Storage” object with new values) and one to restore the state based on the “State Storage”.

Version 1.1 also added two Model attributes: “Visualize priorities” and “Visualize probabilities”. Selecting
them changes the notations of transitions. “Visualize priorities” shows their relative priority in the model
with a green bar on the left. “Visualize probabilities” shows a yellow bar on the right of cold “Transitions”.
Version 1.3 added another Model attribute: “Visualize fire button” which, when selected, will hide the
“Fire” buttons in the Petri Net. It also added a “Capacity” attribute to the “Places”.

The picture below provides some detailed information about the implementation of PN in Bee-Up. More
specifically it shows an excerpt of how the PN meta-model is implemented. Certain parts are provided by
the platform to allow specific functionality, like __D_container__ used to automatically derive “Is Inside”
relations.

Bee-Up - Handbook v1.3

 22

General information for modelling
 Don’t forget to save (so you are safe from data loss).

 Context menus are available for many things (e.g. objects in the Modelling area, entries of the
Explorer window etc.). Making use of them can make work easier.

 Should a window be gone/missing (e.g. Explorer window, Modelling window etc.)  They can be
toggled on and off through the menu “Window  Tools”

 Most icons have a tool tip, which provide a hint on what an icon is about. In case of the icons of the
Modelling window the tool tip show the name of the type (e.g. Entity, Relation, has Attribute etc.).

 The tool also provides some functions for convenience. They can be accessed through the Toolbar

using the icons. From left to right they toggle the functionalities:
o Align objects on the grid. The grid can be configured through the menu “View  Grid  Settings…”
o Show the grid.
o Use the modelling assistant. It supports the creation of new objects and relations from an existing

object.
o Automatically add bend points to relations when creating them to use right angles.

 Notations can contain hyperlinks to other models/objects if the proper attributes are set. For example
if a “Class” has the “Referenced class” attribute set, then the visualized name will be based on the
referenced class and also a hyperlink to that class.

 The size of the Drawing area is represented by the white rectangle with the grey border in the
Modelling area and can be resized similar to a window. Note that it is automatically extended as
needed to fit any new objects that are created or old elements when their position is changed.

 Some model types (e.g. EPC, BPMN) have different modes. Those control which types of objects are
available and visualized in the Modelling area. They can be changed through the menu “View 
Mode”

 Object access locks can be changed through the menu item “View  Object access locks…”

 The tool has certain restrictions due to the things it uses as identifiers and also some limitations:
o Models are identified through their type and a combination of their name and version (“[name]

[version]”). Therefore two ER models, one with the name “Exercise” and version “3” and the other
with the name “Exercise 3” are not allowed.

o Objects in a model are identified through their type and their name. Therefore no two objects of
the same type in the same model can have the same name. Because of that the “Attribute” in ER
models uses “Denomination”.

o Relations in a model are identified by their type, their source object and their target object.
Therefore two relations of the same type linking the same objects in the same direction in the
same model cannot exist.

o The source and the target of a relation cannot be the same object.
o Relations cannot be the source or the target of other relations.

 To work around the limitations of relations the object type “Relation Node” (a small grey circle) is
available in all model types:
o It can be used to create multiple relations of the same type between the same two objects (e.g.

several “Message flows” between two “Pools” in a BPMN model) by linking the first object to the
“Relation Node” and then the “Relation Node” to the second object (this has to be done for each
relation of the same type, between the same two objects, beyond the first direct relation).

o It can be used to draw relations with the same source and target, by going through the “Relation
Node” instead (e.g. when a “Class” is associated with itself). Place the “Relation Node”, then draw
the relation from the object to the “Relation Node” and then from the “Relation Node” back to the
object. Kindly add bend points to the created relations to increase the readability.

o It allows the use of relations as the source or target of another relation by using the “Relation
Node” instead. Freely place the “Relation Node” on an existing relation (e.g. association between
two “Classes” in UML) and create the new relation (e.g. “is Associationclass”) from/to this “Relation
Node” to/from the desired Object (e.g. the third “Class”).

Bee-Up - Handbook v1.3

 23

Change History

Changes in Version 1.3
 In BPMN and EPC: Added possibility to further describe the decisions made in tasks/functions through

elements based on DMN Version 1.1.
- (BPMN) Tasks and (EPC) Functions can reference a (DMN) Decision through their “Make decision”

attribute.
- (BPMN) Data Objects and (BPMN) Data Associations can be used to further details where and how

(DMN) Input Data is set.

 In BPMN and EPC: Made the notation of relations more distinguishable from one another.

 In PN: Improved and extended the execution and simulation capabilities:
- The Delayed Simulation is now more responsive (Cancelling is now quicker), works with tenths of a

second (it can be faster than 1 second now) and also highlights the fired transitions (to better see the
fired transitions: switch to "Grayscale mode").

- The created simulation log has changed. Instead of only containing the places and the amount of
tokens, it now also contains the transitions and whether they have fired or not. For details check the
information text of the “Show log” attribute.

- A new style for firing transitions was added through the "Automated Transition Firing" element. See
its information text for more details.

- Added an “Effect” attribute to transitions and an “Allow effects” model attribute. “Allow effects”
activates the “Effect” attribute, which can then be used to specify AdoScript code, which is executed
when the transition is fired (after removing tokens, before creating tokens).

- Places can now have a maximum capacity for tokens specified.
- The transition’s "Fire" buttons can be hidden using the model attribute "Visualize fire button".

 In ER: The Create SQL statements functionality now has two options for handling inheritance 1) the old
style where the table is copied and 2) [now default] which handles inheritance similar to Weak
Entities. They can be switched through the model attribute "IS-A Behaviour".

 Added an option to show models using mostly only black, white and gray for all model types except
UML. This can be enabled for each model through a new model attribute "Grayscale mode".

 Added functionality which executes Flowcharts. The provided code in Flowcharts (Operation
code/Check expression) can use AdoScript as well as some additionally provided keywords. See the
information text for "Execute flowchart from Start" in a Start Terminal for more details.

 Added Functions for AdoScript which provide a random value based on different types of distributions.
Those are:

- randomStandardUniformDist() --> a random value from a uniform distribution between (including)
0.0 and (excluding) 1.0, so it is very close to the Standard Uniform Distribution.

- randomUniformDist(lower_limit, upper_limit) --> a random value from a uniform distribution
between (including) the lower limit and (excluding) the upper limit.

- randomStandardNormalDist() --> a random value from a standard normal distribution (i.e.
expectancy value = 0, standard deviation = 1) based on Box-Muller transformation using a natural
logarithm.

- randomNormalDist(expectancy_value, standard_deviation) --> a random value from a normal
distribution with a specific expectancy and standard deviation based on Box-Muller transformation
using a natural logarithm.

- randomTriangularDist(lower_limit, mode, upper_limit) --> a random value from a triangular
distribution based on inverse CDF from "Beyond Beta - Other Continuous Families of Distributions
with Bounded Support and Applications". The triangle is build from lower_limit to upper_limit with
its peak at mode.

- randomExponentialDist(inverse_scale) --> a random value from an exponential distribution based on
inverse CDF using the inverse scale provided (lambda).

- randomDiscreteDistPositions(probabilities) --> a random value from a discrete set of probabilities.
The probabilities have to be an array and the returned value is a position index (0 to (LEN
probabilities)-1) from the array. The sum of all probabilities should be 1.0.

Bee-Up - Handbook v1.3

 24

- randomDiscreteDistValues(value_probabilities) --> a random value from a discrete set of values and
their corresponding probabilities. The value_probabilities have to be a map (key-value pairs), where
the keys are the possible values (either strings or numbers) and their values should be their
probability. The sum of all probabilities should be 1.0.

- randomDiscreteUniformDist(lower_limit, upper_limit) --> a random value from a discrete uniform
distribution of integers between (including) the lower limit and (excluding) the upper limit.

- randomBernoulliDist(probability) --> either 1 or 0 based on the Bernoulli distribution, with the
parameter indicating the probability of the value 1. A probability of 0.5 can be considered a coin-toss.

- randomRademacherDist() --> either 1 or -1 based on the Rademacher distribution, where the
probabilities of both cases are 50%.

- randomCoinToss() --> either 1 or 0 based on a fair coin, with 50/50 chance. So same as
randomRademacherDist, only with other outcomes.

 The automatic change of model names by adding the model group name at their beginning has been
removed, since it has led to problems when importing models.

 Additional minor improvements and bug-fixes.

Major changes in Version 1.2
 In BPMN and EPC: Added possibility to describe automated tasks (BPMN Service tasks, EPC functions)

through Petri Nets or Flowcharts.

 In ER: Added two properties "Data type (direct)" and "Auto increment" for ER attributes, providing
more options to the generation of SQL-Create statements.

 Added additional attributes to elements for enhancing the RDF-Export (e.g. specify element URI,
provide additional triples, meaningful references between models/model elements).

Major changes in Version 1.1
 In BPMN: Merged "Intermediate Event (boundary)" and "Intermediate Event (sequence)" into

"Intermediate Event". The old classes are still available and can be converted to allow model
compatibility to Version 1.0

 In PN: Allowed two special conditions on Arcs which control the firing of the transition without
consuming tokens.

 In PN: Added two model attributes "Visualize priorities" and "Visualize probabilities" to turn on and off
the visualization of those transition attributes in the model.

 Added RDF Export functionality for all models.

Development Team
The Bee-Up modelling tool has been realized by the following team:

• Patrik Burzynski (patrik.burzynski@univie.ac.at): chief developer

• Dimitris Karagiannis: project owner

Additional used Tools
The following additional tools, implementations, binary codes etc. are used/included in Bee-Up and their
according licenses apply:

 Apache Jena 3.1.0 – is used by the RDF Export functionality. Apache Jena website is available here:
http://jena.apache.org/

 JDOM 2.0.6 – Developed by the JDOM Project (http://www.jdom.org/), it is used in the RDF Export
functionality.

http://jena.apache.org/
http://www.jdom.org/

