OPEN MODELING METHODS

Greater complexity and wicked problems Integration of social and technical systems Growing importance of collaboration in interagency and business unit collaboration

Non-functional requirements Open modeling methods Identifying open modeling concepts

Research Projects Improving cognition through different perspectives Modeling Collaboration Agile Development Processes

The Need for Open Modeling Methods for Complex Environments

MelCa addresses trends from single independent processes

INCREASING COMPLEXITY

Continual product improvement

NOT complicated BUT complex (unpredicatable)

IMPACT OF COMPLEXITY

Emergence of new ideas

Importance of process integration

Self organization

Unexpected events

INCREASING NETWORKING

Getting expertise Getting special products

When one process changes other processes are effected.

More and more wicked problems with non functional requirements

Every wicked problem is **unique**.

Wicked problems **cannot be precisely defined**. The problem of poverty in Texas is grossly similar but discretely different from poverty in Nairobi, so no practical characteristics describe "poverty." Making a city safe Improving health Better access to drinking water Securing a food supply

It's hard, maybe impossible, to measure or claim success with wicked problems.

Solutions to wicked problems can be only good or bad, not true or false

There is **no template to follow when tackling a wicked problem**, although history may provide a guide. Teams that approach wicked problems must literally make things up as they go along.

There is always **more than one explanation for a wicked problem**, with the appropriateness of the explanation depending greatly on the individual perspective of the designer.

No mitigation strategy for a wicked problem has a definitive scientific test because humans invented wicked problems and science exists to understand natural phenomena.

Offering a "solution" to a wicked problem **frequently is a ''one shot'' design**.

Examples

SMART CITIES	
Better transportation Easy access to health care Flexible education (Connected Campus Public safety A variety of activities	es)
	Interagency collaboration
Building management – monitoring Waste management City administrationSharing knowled Defining knowled Defining knowled Defining knowled Defining knowled Defining knowled	Sharing knowledge Defining knowlege flows
Internet of Things	Focusing on emerging requirements

Sensors of activities Intelligent support Improving processes through better context awareness

A CITY IS A SYSTEM OF SYSTEMS http://public.dhe.ibm.com/common/ssi/ecm/en/gbe03227usen/GBE03 227USEN.PDF

A more socially oriented enterprise

Social Businesses

Importance of social structures in the system of systems to include collaboration

Structured processes

Social communities

Evolution of Design Process

Type 1 – agreement on problem, agreement on solution

Make jeans

Sell at home

Type 2 – agreement on problem, no agreement on solution

Where to sell

Type 3 - no agreement on problem, no agreement on solution

Where to sell

Decresing precision in requirements

Methodologies to design more complex and adaptive systems

How to design business processes in these environments

Continuous and incremental development

Need ways to:

Develop a holistic picture – showing all relationships between systems

Be agile and manage change

Identifying rather than solving a problem

- Type 1 problems and solution agreed on
- Type 2 problem agreed on but solution not clear
- Type 3 there is no agreement on problem or solution

Requirements by Storyboards

Story boards to link different levels

Vision and problem storyboard

Focusing on different perspectives at Project Level

Knowledge flow Social networking Process Technology

Need a language to define the structure and the operations

Integrate social and system structure

Multi disciplinary and holistic

MeLCa for Complex Organisation

In multi stakeholder collaboration

Organisation perspective
Business perspective
Knowledge perspective
Enterprise Social perspective

Problems

A State Government Structure

Collaboration with multiple stakeholders – Highlighted with Grey colour

- »Dedicated Managers for each Private Firm to coordinate the projects
- Projects involved with around 300 internal & 400 external staff
- Faced with policy/governance/coordination issues
- Faced with record management issues
- Faced with information sharing and managing knowledge issues

A State Government Structure

System characteristics

Group – deals with one or two activities – decisions are simple. Carries out well defined activities.

Organization – can coordinate a number of groups – has multiple decisions – can contain groups or other organizations

Community – a loose connection of people or systems with common goals and rules of behavior.

Organizations can be part of a community. They can also include a community, For example academics in a University.

Business or Enterprise – is made up of many organizations or groups..

Simple example – a group

Equivalent hierarchical

Coordination through collaboration

Roles, activities, artifacts, interactions

Organisational Perspective

Activities

Knowledge

Enterprise Social

Multiple Collaboration

Finding good perpspectives

Another Project Enterprise Social Network: XXX Case Study Collaboration

29

Integrating into agile development

IMPORTANCE OF STORIES

Stories are a way of describing problems and ways to solve them

Combining stories gives an idea of what needs to be done

Stories for identifying issues (Smart Campus)

Current development

Story boards to link different levels

Described in new eBook

Modeling system of systems in partner collaboration

SUMMARY AND FUTURE WORK

Why are open system methods needed

Defined a set of open concepts for collaboration

Illustrated by an example for analysis

Integration into agile development

Need support for dynamic concepts formation