Engineering the Cooking Recipe Modelling Method: a Teaching Experience Report

Prof. Dr. Robert Buchmann,
Lect. Dr. Ana-Maria Ghiran

University Babeş-Bolyai of Cluj Napoca, Romania
Agenda

• Motivation
• Teaching artefact
 • including the artefact building blocks
• Teaching method
 • including the targeted engineering method
• Example
• Conclusions
Where am I from?

• Babeș-Bolyai University of Cluj-Napoca, Romania
• biggest city in Transylvania & friendliest city for foreigners in Europe (cf. UK's Office for National Statistics)
• largest and oldest Higher Education Institution in Romania
The Faculty of Economics and Business Administration

- largest faculty in Babeș-Bolyai University
- offers a study track on **Business Information Systems** that involves Conceptual Modelling on several study levels:

<table>
<thead>
<tr>
<th>Level</th>
<th>Topics</th>
<th>Means of involving Conceptual Modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Level</td>
<td>Semantic Technology, Enterprise Modelling, Knowledge Management Systems, Business Process Management Systems</td>
<td>• As a Design Science approach
• As a Knowledge Externalization approach
• As an enabler for engineering novel Modelling Methods, Languages and Tools
• As an enabler for Agile model-driven engineering</td>
</tr>
<tr>
<td>(PhD or PostDoc Research)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Master Level</td>
<td>Database Design, Software Design</td>
<td></td>
</tr>
<tr>
<td>Bachelor Level</td>
<td>UML & ER modelling subordinated to Software Engineering disciplines (perceived as "means-to-an-end" subserving Software Engineering)</td>
<td></td>
</tr>
</tbody>
</table>

Challenge:

How to bridge the gap between Bachelor level and Professional level?
The typical BIS Master Student profile

• **Majority**: Business Information Systems and Computer Science graduates. **Minority**: Business Administration graduates

• **Dominant modelling experience**:
 - UML and ER diagrams to document their bachelor thesis projects
 - Tools: MS Visio, Powerpoint, various free "drawing tools" providing UML templates

• **Dominant perception on Conceptual Modelling (CM)**:
 - It is a form of "drawing" with "predefined" symbols
 - It aims to support human understanding of system designs (as alternative to text)
 - CS graduates are familiar with the "code generation" use case, but rarely employed it
 - Generally, CM is a technique subordinated to Software Engineering and employs established standards
Common fallacies in CM perception

• Limited understanding of CM goals and its application areas
 o "CM is a Software Engineering activity"

• Lack of awareness on the distinction between CM and "drawing with predefined symbols"
 o "main purpose of CM is graphical documentation with predefined symbols"

• Lack of awareness on the modelling method building blocks (semantics, syntax, notation etc.)
 o general confusion between modelling method, modelling language, modelling tool

• Lack of awareness on the agile conceptualization of CM methods
 o "modelling languages are fixed, invariant standards"

• Weak understanding of model qualities and model-to-reality relation
 o "good models are those that accurately(!?) reflect reality"
The targeted revelations

Modelling method = agile artefact
Modelling method = DSR artefact
Modelling method domain not limited to MDSE
Modelling method = means of knowledge externalisation
The teaching artefact: a Modelling Method

Underlying method: Agile Modelling Method Engineering*

META-META LAYER

The (fixed) concepts that can be used to agilely evolve modelling languages (metamodels)

META LAYER

The agile terminology (metamodel) of the modelling language

MODELS LAYER

Models describing application case knowledge

Interactive Teaching Method

Evolving each building block
Gradually adding method building blocks

Re-inspecting the modelling method and reflect on
• how it was specified
• how it was (re)implemented

*ADOxx as fast prototyping environment
**AMME as conceptualization methodology
Design rationale for the modelling method

Key characteristics of the **modelling method** developed interactively:

1. The application domain **detached from Software Engineering**
2. **Minimalism** (requires minimal domain knowledge, fully deployed in 2 hands-on meetings plus 1 for theoretical reflection)
3. Domain-specificity **manifests in all building blocks** (notation, semantics, functionality etc.),
4. Targets **Knowledge Externalization** (rather than Software Design)
5. It is a **Design Science artefact** (i.e., driven by some situational requirements)
6. It can itself **evolve agilely** (i.e., agility manifests at modelling method level, not limited to model contents level)
7. It stimulates **lateral thinking** (i.e., clashes dominant perception with what is revealed by hands-on experience)
The Application Scenario

Application Domain: Cooking

Use Case: Knowledge Management in a Food Establishment

Modelling Method goal: to externalize cooking recipes in a diagrammatic knowledge base (i.e., can be queried for analysis and knowledge retrieval)

Rationale:
- a uniform starting point for all students, regardless of background and modelling experience;
- defuses the dominant perception that CM is a Software Engineering task
- emphasizes a generalizable Knowledge Management use case
- emphasizes the distinction between "graphical documentation" and "query-able knowledge"
- illustrates domain-specificity without requiring rich domain expertise
- supports analogies with business process modelling
Distinguishing Conceptualization Tasks

3. Bridging Concepts and Relations through Syntactic Constraints

2. Identification of Concepts and Relations

1. Mockup Diagram
Initial implementation (concrete syntax)
Emphasizing "models as knowledge"

Model queries relying on the machine-readable semantics (model query engine provided by ADOxx)

Domain-Specific Semantics captured in machine-readable conceptional schema
Agile Method Evolution: 2nd Iteration

REQUIRED TOOLS
- Rolling pin
- Regent
- Mixer

REQUIRED INGREDIENTS
- Yeast
- Flour
- Milk
- Sugar

(now including unit prices in their schema)

Requirement: Mitigate risk of visual cluttering =>
1. Partition the language in distinct model types
2. Establish semantic links between models

Requirement: Domain-specificity should also manifest in notation =>
1. Ability to replace default notation with custom graphics
2. Visual cues reflecting key properties

COOKING RECIPE
(now including domain-specific hyperlinks and visual cues)

Requirement: Eliminate "Documentation" concept =>
Instead, have hyperlink to live Web resources
Conclusions

Strengths
- minimalism and ease of implementation
- reveals the notion of modelling method as an evolving Design Science artefact
- detached from software engineering
- domain-specific without requiring prior domain expertise
- relies on free OMiLAB resources

Weaknesses
When presenting their own homework projects, all students reported process-centric methods. For some, the exercise creates the impression that all CM is process-centric (non-behavioural model types should be emphasized more)

Opportunities
By decoupling CM from software engineering, students are stimulated towards lateral thinking and the ability to devise modelling methods...
- ...for domain-specific goals or
- ...for research (experimentation) purposes

Threats
Dominant practices around the local industry generate a "tunnel vision" with restricting consequences:
- the limited goal of models as graphical documentation
- limited understanding of modelling agility
- lack of awareness on the "models as knowledge representation" perspective
Thank you!

Robert Buchmann
robert.buchmann@econ.ubbcluj.ro

Ana-Maria Ghiran
anamaria.ghiran@econ.ubbcluj.ro