
1

RDF Export
This document provides a simple manual on how to use the new and improved RDF Export. Some
knowledge about RDF and SPARQL is required to properly understand certain parts of this manual.

In order to run it a proper java installation is necessary. Java can be obtained at
http://www.oracle.com/technetwork/java/javase/downloads/index.html (last accessed 18. Feb.
2013). To run a Java application the JRE is needed (JDK is necessary for development). The
implementations have been compiled for Java 1.6 and should also work with newer versions.

Please not that this document has been created on a Computer using the “German” language,
therefore certain buttons can have a different label (e.g. “Ja” instead of “Yes” or “Öffnen” instead of
“Open” etc.).

1 General Procedure

1. Create the models in the Prototype
2. Export the desired models as XML

3. Run the .jar file of the RDFExport

IMPORTANT: The “adoxml31.dtd” has to be in the same folder as the “RDFExport.jar”!

2

2 Using the RDF Export
When starting the RDF Export you are greeted with the following window:

It tool is separated into three major components which can be accessed through the tabs at the top:
1. Metamodel Management – allows loading metamodel descriptions from RDF (TriG, TriX or

Turtle) or from an ADOxx 1.3 XML describing the metamodel that is transformed into RDF
statements about the metamodel.

2. Model Management – allows loading model descriptions from RDF (TriG, TriX or Turtle) or
from an ADOxx 1.3 XML describing the model(s) that is transformed into RDF statements
about the model. For the transformation data from the Metamodel Management
component is required (i.e. a metamodel has to be loaded).

3. Query Server – allows executing Select queries on a server and
shows the result as well as the duration of sending the request and
receiving the response.

The recommended procedure is to first use the Metamodel Management to
load data/information about the metamodel and then use the Model
Management to transform the model data into RDF.

Model

Instance

Meta-model

describes

describes

3

2.1 General User Interface
The user interface has been designed to use icons visualizing the functionality that hides behind
them as intuitively as possible. Additionally tool-tips are shown when moving the mouse over a
button. The major functionalities for each of the three components can be found close to the top of
the window. The components are also composed out of smaller parts/panels (e.g. Tree view in the
Metamodel Management component) which in turn can have their own buttons. Some of those
panels are reused throughout different components (e.g. Tree view is used in both Metamodel
Management and Model Management). Their component independent features are described in
subsection of this section, while the component specific features are covered in the sections
corresponding to those components. Furthermore dialogs are used to communicate with the user
and inform about successes and errors.

2.1.1 Icons
The following table describes what the used icons visualize:

 Opens or Loads from a file. Saves to a file.

 Downloads from a server. Uploads to a server.

 Opens a server configuration dialog. Executes available/selected queries.

 Adds an item (server, query etc.) Removes the selected item(s).

Updates the data about the item when
it has been changed. Closes the window or dialog.

 Mark the selected items. Unmark the selected items.

 Switch the mark of the selected items.
Metamodel management

 Rename the loaded metamodel.

Set the selected item to represent
equivalence (owl:sameAs).

Set the selected item to represent
membership (rdf:type).

Model Management

Indicates to save as several separate
files.

Indicates if XML transformation should
strictly adhere to metamodel.

2.1.2 Server management
Servers can be used throughout all components. However, to properly work the available servers first
have to be configured. This is achieved by opening the dialog through the “Server” button.

This button is found in all components in the top row. The drop-down box to the left of the button
shows which server is currently selected and also allows changing the selected server. Note that all
components use the same server configurations, and change the server in one changes the server in
all of them. Pressing the button opens the dialog shown below.

4

The icons at its bottom (from left to right) allow:
• Adding servers stored in a file (.ser)
• Saving all servers in a file (.ser)
• Adding a new server
• Updating the information of the currently selected server (highlighted with red rectangle)
• Removing the currently selected server
• Closing the dialog

The dialog itself is split into two parts: the left part contains all of the known servers, while the right
part shows the details of the currently selected server. The right part can also be used to modify the
details of the selected server. Note that changes are only applied when the “Update” button
(highlighted in image) is pressed. When the application is started it also checks two places for files
containing server descriptions:

• The user’s home directory – it will add servers from all “.ser” files from there.
• The applications directory – it will add all servers from a “autoload.ser” file. This only

happens when nothing was loaded from the user’s home directory.
• If no servers were loaded then a default “localhost” sesame server is added.

Note that for security reasons passwords are not stored in the files and are also not displayed when a
server is selected. Also currently only Sesame servers (tested with version 2.7.9) are supported.

2.1.3 Tree view
Some components contain a Tree view to describe one or several graphs by arranging their contents
as a tree. This assumes a certain semantic behind a graph and that it makes use of specific
statements (e.g. Metamodel Management component assumes that attributes can be identified by
being of rdf:type cv:a_attribute). Therefore the specific structure of the tree depends on the
component. The image below shows an example of the Tree view from the Metamodel
Management component.

5

In general the elements represent non-literal rdf:Resources (with possible exceptions). When such an
element is selected in the tree then the right side will show details about that element1. The text
field at the top shows the complete URI of the element and the table below will show all known
statements (in a certain context, typically the graph) in which the element is used.

The table contains one column for the predicate and one for the object of the statement, while the
element selected from the list is always considered the subject. Colours are used to make the entries
easier to identify, with black entries representing literals, blue entries representing non-literal
resources and green for inverse properties, which additionally start with the ‘^’ character. Clicking on
a row in the table will select the element in the tree (that is closest to the root) representing the
object (from the “Object” column) from that row. This allows navigating through the tree in a similar
fashion to using hyperlinks. It is also possible to sort the entries in the table by clicking on the
heading of the table.

2.1.4 Queries - Local queries and Remote queries
Some components contain a query part (e.g. Local queries) part which allows loading, creating and
adapting queries that are used in the component. In general those queries are used to manipulate
the graph. The left side of the part contains the list of all loaded queries, while the right side
describes the selected query1. The order of the queries in the list can be manipulated through drag-
and-drop. The details of the query always contain its name and the query code. Additionally, local
queries which are used for graph manipulation can either be set to add triples or remove triples. The
image below shows a Local queries part with three queries loaded and one of them selected.

Not far from the query part are usually five buttons located that allow (in the above image from left
to right):

• Loading queries from files (filename used as query name)
• Saving selected queries to files (select folder where to save them)
• Adding a new query
• Updating the currently selected query1 (when changes have been made)
• Removing the selected queries

It is often possible to select a folder when loading queries, which will then search recursively the
folder and all of its children for queries to load and then add them in alphabetical order. Note that
the value of a query does not change unless the update button has been clicked. The button
becomes available if some part of the query is changed. Therefore changes can be cancelled by
simply selecting a different query in the list.

1 If more than one element is selected then only the details of the first element (i.e. closest to the top) are
shown.

6

2.2 Metamodel Management
The Metamodel Management component allows transforming metamodel descriptions from XML to
RDF, retrieving metamodel RDF descriptions, manipulating them to a certain degree and storing the
descriptions.

2.2.1 Loading from a file
The description of the metamodel can be loaded in the Metamodel Management component by
using the “Open” button.

This in turn will open up a file selection window. Here select from which file to load the descriptions.
Different types are supported like TriG and XML among others. A TriG file (ComVantageLib_XXX.trig)
containing the metamodel description for one of the ComVantage prototypes has been provided
together with the RDF Export. Should an XML file be selected then the user is asked to specify a
graph name and the metamodel described in the XML it will be transformed into RDF first. If the XML

7

file does not follow the required structure (i.e. the structure of a modelling method exported from
ADOxx 1.3) an error will be shown2.

If the selected source file contains more than one graph then a dialog will ask which of those graphs
should be used for the metamodel description (as in the image below).3

If a graph has been loaded then a success dialog appears and the Metamodel Management
component should change to something resembling the following image (the red rectangle highlights
the change):

2.2.2 Downloading from a server
It is also possible to download a graph describing the metamodel from a server. This requires at least
one properly configured server (see section 2.1.2). The server to use for the download has to be
selected from the drop-down list at the top, which contains all of the configured servers. After the
right server has been selected press the “Download” button to retrieve the data from the server.

If the selected server stores more than one graph then a dialog will ask which of those graphs should
be used for the metamodel description.

2.2.3 Managing the metamodel
Some limited functionality to manage the metamodel is available in the application. The Metamodel
Management component uses different parts for this task:

• A “Rename” button to rename the currently loaded metamodel and change the default
namespace. (at the top next to the “Save” button)

• A Tree view that shows the attributes, classes, modeltypes and relations described in the
metamodel. (accessible through the tab in the upper part)

2 In this case the error usually complains with a “XML Parse Exception: Missing <classes> element”.
3 Other windows might appear depending on the selected file type, but they should be self explanatory.

8

• A Syntax view that shows the current metamodel description in TriG format. (accessible
through the tab in the upper part).

• A Local queries panel that shows loaded queries. (always present at the bottom)

The “Rename” button should be used to change the namespace and name of the graph containing
the description of the metamodel. A dialog will ask to enter a new URL for the graph and everything
before the first ‘#’ character will be used as the namespace and everything after that as the name of
the graph.

The Tree view shows some of the information of the metamodel description that was properly
interpreted (see section 2.1.3). Elements are grouped into attributes, classes, modeltypes and
relations and can be found as children of those in the tree. If certain elements (like classes or
relations) make use of attributes, then those attributes will also be shown as children of those. Note
that even though the same attribute might be found in several places of the tree it is still the same
attribute and changing one changes them all. The image below shows how the Tree view could look
when the attribute “a_Activity_cost” is selected.

9

The buttons at the bottom of the Tree view can be used to manipulate the data of the graph. Certain
elements (classes, attributes etc.) can either be selected or not using the first three buttons seen in
the image above. Elements that are not selected will have certain statements about them removed
(e.g. for an attribute it removes the statement about its rdf:type being cv:a_attribute) when the
graph is saved or requested by another component (e.g. Model Management component). This is
useful to remove implementation specific or “debug” attributes that are not necessary in the RDF
serialization. Additionally, if an attribute is selected, the fourth button (read as “equivalence”) allows
changing if the attribute should be used to determine the URI for objects4. This is visualized by the
attributes text changing to the colour blue. The firth button (read as “membership”) is available
when a relation is selected and allows changing if the relation should be used to indicate
membership to a type5. This is visualized by the relations text changing to the colour green. Note that
all of those changes are only applied when the graph is saved, uploaded or retrieved by another
component.

The Syntax view simply shows the information of the metamodel description as RDF code using TriG
syntax. While it cannot be edited, it is possible to select the text (or parts of it) and copy & paste it to
other tools if so desired. Alternatively it could be saved in a file with the desired format.

The Local queries panel allows to specify queries that can then be executed on the graph locally (see
section 2.1.4). The Metamodel Management component only supports “Construct” queries, which
generate triples that are either added or removed. Please note that the supported query concepts
are restricted by the library used in the implementation and therefore not all queries that are valid
SPARQL can necessarily be executed in this application. It is not recommended to use queries to add
statements in the form of “?x rdf:subPropertyOf owl:sameAs” or “?x rdf:subPropertyOf rdf:type”,
since those will be overwritten by the adaptations from the Tree view (i.e. if an attribute is not set as
“equality” in the Tree view, visualized by a blue font-colour, then any “rdf:subPropertyOf
owl:sameAs” statement attached to that attribute will be removed when the graph is used). The
queries are executed by pressing the “Run queries” button at the top.

4 This adds a statement about the attribute being rdfs:subPropertyOf owl:sameAs.
5 This adds a statement about the relation being rdfs:subProeprtyOf rdf:type.

10

This executes all of the queries in the Local queries panel in the order they appear in the list, with the
ones closer to the top being processed before queries closer to the bottom.

2.2.4 Saving to a file or uploading to a server
The RDF description of the metamodel can also be saved to a file or uploaded to a server. Use either
the “Save” button or the “Upload” button to access those functionalities.

Both are very similar to their “Load”/”Download” counterparts. While saving opens a file selection
dialog, uploading uses the server selected in the drop-down list. Both apply the changes specified in
the Tree view before saving/uploading. Uploading currently uses the HTTP-PUT method, which
means that any previous graphs with the same name are replaced.

11

2.3 Model Management
The Model Management component allows transforming model descriptions from XML to RDF in
accordance to a specific metamodel description, retrieving model RDF descriptions, manipulating
them to a certain degree and storing the descriptions. It looks and works (for the most part) very
similar to the Metamodel Management panel.

2.3.1 Loading from a file
The description of one or several models can be loaded in the Model Management component by
using the “Open” button.

This in turn will open up a file selection window. Here select from which file to load the descriptions.
Different types are supported like TriG and XML among others. An example TriG and XML file
(RDFExport_Example_XXX.*) containing several public models using the ComVantage metamodel has
been provided together with the RDF Export. If an XML file is selected then the user is asked to

12

specify a namespace to be used and the models described in the XML it will be transformed into RDF.
This transformation however requires that a metamodel description is loaded in the Metamodel
Management component first. The transformation of the model is then based on the loaded
metamodel description. If the XML file does not follow the required structure (i.e. the structure of a
modelling method exported from ADOxx 1.3) or no metamodel description is loaded an error will be
shown. An error also occurs when the DTD for the XML could not be found.

If the graphs have been loaded then a success dialog appears and the Model Management
component should change to something resembling the following image (the red rectangle highlights
the change):

2.3.2 Downloading from a server
It is also possible to download graphs describing models from a server. This requires at least one
properly configured server (see section 2.1.2). The server to use for the download has to be selected
from the drop-down list at the top, which contains all of the configured servers. After the right server
has been selected press the “Download” button to retrieve the data from the server.

This will download all of the graphs found on the server.

2.3.3 Managing the model
Some limited functionality to manage the metamodel is available in the application. The Model
Management component uses different parts for this task:

• A Tree view that shows the described models and the elements they contain as a hierarchy.
(accessible through the tab in the upper part)

• A Syntax view that shows the current described models in TriG format. (accessible through
the tab in the upper part).

• A Local queries panel that shows loaded queries. (always present at the bottom)

13

The Tree view shows some of the information of the description of the models that was properly
interpreted (see section 2.1.3). The children of the root element represent all the graphs that have
been loaded. If the graph represents a model then it will contain additional children. Those represent
either model objects or relations that are part of the model. The model objects can further contain
children representing links to other objects (e.g. “Interrefs” or to elements of a table). Different icons
are used to represent different types of elements in the tree:

• is used for models.
• is used for model objects.
• is used for relations.
• is used for relations without attributes or links (Interrefs, table attributes etc.)

Note that even though the same element might be found in several places of the tree it is still the
same element and changing one changes them all. The image below shows how the Tree view could
look when a modelling object is selected.

14

The buttons at the bottom of the Tree view can be used to manipulate the data. Certain elements
(models, model objects etc.) can either be selected or not using the three buttons seen in the image
above. Elements that are not selected will have certain statements about them removed when the
graph is saved or requested by another component. For models the graph with their URI as well as all
statements where their URI is the subject are removed. For any type of model content (model
objects, relations etc.) every statement where they are the subject or the object will be removed.

The Syntax view simply shows the information of the models described as RDF code using TriG
syntax. While it cannot be edited, it is possible to select the text (or parts of it) and copy & paste it to
other tools if so desired. Alternatively it could be saved in a file with the desired format.

The Local queries panel allows to specify queries that can then be executed on the graph locally (see
section 2.1.4). The Model Management component only supports “Construct” queries, which
generate triples that are either added or removed. Please note that the supported query concepts
are restricted by the library used in the implementation and therefore not all queries that are valid
SPARQL can necessarily be executed in this application. The queries are executed by pressing the
“Run queries” button at the top.

This executes all of the queries in the Local queries panel in the order they appear in the list, with the
ones closer to the top being processed before queries closer to the bottom. Also the queries are
executed for each graph separately.

2.3.4 Saving to a file or uploading to a server
The RDF description of the models can also be saved to a file or uploaded to a server. Use either the
“Save” button or the “Upload” button to access those functionalities.

15

The upload is very similar to the download and requires that a server is selected in the drop-down
list. Both the upload and the saving apply the changes specified in the Tree view before
saving/uploading. Uploading currently uses the HTTP-PUT method, which means that any previous
graphs with the same name are replaced. The description can either be saved as a file using RDF or
transformed into ADOxx 1.3 XML by selecting “ADOxx XML files” as the file type. This transformation
however requires that a metamodel description is loaded in the Metamodel Management
component first since it is based on statements about the metamodel. If those are not present then
the transformed models can contain less data then the original model. If “Turtle files” is selected
then each graph is saved in a separate file, since turtle does not support multiple graphs in one file
(for details on how files are split continue reading the next paragraph).

There are also additional options that can be set for saving as a file using the two checkboxes to the
right of the “Save” button. When the left checkbox is selected then each graph will be stored in a
separate file. In this case the name of each saved file consists of a prefix (which is the part of the
filename specified in the dialog) and the graphs name. When the right checkbox is selected then the
transformation to XML checks if an attribute is used in a specific class (by querying the metamodel
description) before creating it. If it is not checked then the implementation only checks if the
attribute is present in the metamodel description at all. Having more attribute elements in the
ADOxx 1.3 XML does not prevent it from being properly imported, since incorrect attributes are
ignored for the most part (a warning at the end might appear).

16

2.4 Query Server
The Query Server component allows executing SPARQL queries on a remote SPARQL endpoint and
shows the result and time it took to execute the query. Currently only queries that return a result of
type “application/sparql-results+xml” are supported (i.e. select, but not construct).

2.4.1 Loading, managing and saving queries
The loading, managing and saving of queries is already described for the most part in section 2.1.4.
The panel for those tasks is found at the top “half” of the application. One difference is the buttons
which are located above the list instead of below. Also when a query is added using the “Add” button
the component tries to contact the currently used server and retrieves all of its prefixes, which are
automatically added to the query. If no prefixes are found on the server then a set of predefined
prefixes is used.

2.4.2 Executing queries
In order to execute queries at least one properly configured server (see section 2.1.2) is necessary.
The server to use for the query has to be selected from the drop-down list at the top, which contains
all of the configured servers. Also only one query can be executed at a time, which is simply selected
from the list. When a query is selected simply press the “Run query” button. Note that the content of
the text area on the right is sent as the query and not the value stored in the query object. The

17

following image shows a simple example query and highlights (red rectangle) the “Run query”
button.

Executing the query results one or several dialogs denoting the success and/or any errors. The results
received from the server are then shown in the bottom “half” of the application. The result contains
three different panels with information:

• The Time panel providing information about how long the execution of the query took.
(always visible)

• The Returned message panel which contains the message/content returned from the server.
(accessible through a tab)

• The Table view which shows the returned message/content as a table. (accessible through a
tab)

The Time panel provides three pieces of information: when sending the query has started, when the
result has been received and the difference between those points in time. Times are presented in the
format of “Hours : Minutes : Seconds : Milliseconds”, while the date uses the format of “Day : Month
: Year”. Note that the results also contain the time it takes to create the message, send it to the
server and receive the result. The following image shows one example of the Time panel for the
query used above.

The Returned message panel shows the message that has been returned by the server. Since only
“application/sparql-results+xml” types of result messages are currently supported they should
always follow that structure. The following image shows an example for the query used above.

18

The Table view parses the returned message and shows the result in the form of a table. The
columns represent the different variables from the returned message while each row represents a
single result. Similar to the Tree view (see section 2.1.3) colours are used to make the entries easier
to identify, with black entries representing literals, blue entries representing non-literal resources.
The following image shows an example for the query used above.

19

2.5 Procedure for serialization of models as Linked Data
This application was mainly created to allow the serialization of models as Linked Data and from
there to further link them to other data. This is achieved by transforming models from a propriety
format into RDF descriptions and then serializing those in a desired RDF serialization format. This
implementation focuses on transforming models from the ADOxx 1.3 XML serialization format. If the
goal is simply to serialize the models as Linked Data, without the desire of managing any metamodel
descriptions or further changing the model descriptions in the application, then the procedure is as
follows:

1. Load the corresponding metamodel description in the Metamodel Management component.
In the simplest case this involves simply loading a .trig file (otherwise see section 2.2.1).

2. Load the XML in the Model Management component. This can simply be achieved by using
the XML export of the ADOxx 1.3 tool (more details see section 2.3.1).

3. Save the data from the Model Management component in the desired format or directly
upload to a server (more details see section 2.3.4).

20

3 Use with a Quad Store
The generated results can also be published to a Quad Store like Virtuoso or Sesame.

3.1 Publishing to Virtuoso
In order to publish the data in Virtuoso you have to save the files in Turtle (.ttl) format. Putting a tick
next to “Multiple files” allows you to select a folder to save to instead of a file, which should make
things easier. This generates one file for each graph.

Now start the Virtuoso Conductor, log in and go to the “Quad Store Upload” found in the “Linked
Data” part.

Once there select one Turtle file containing a graph and specify the URI for the graph under “Named
Graph IRI”. Then click on “Upload” to upload the graph.

Now repeat the previous step (select file, provide URI and click Upload) for every graph you want to
publish.

Once finished, you can query the data from the SPARQL component of the Virtuoso Conductor.

3.2 Publishing to Sesame
The application provides a “Download” and “Upload” button that can be used with Sesame servers.

21

4 Finer details of the RDF Export
This section addresses some of the finer details of how the RDF Export works and can help in finding
solutions to (more or less) exotic errors or provide some inspiration for enhancing the connectivity of
the modelling method to Linked Data. It is easy to feel lost in this section, especially without
knowledge about modelling, metamodelling, ADOxx, the ADOxx XML serialization, RDF, the RDF TriG
syntax and some basic programming.

4.1 Transformation and structure of (meta-)model descriptions
The transformation of metamodel descriptions is used to translate the description of a metamodel
from ADOxx 1.3 XML to RDF. This also means that the structure is changed to one closer resembling
the metamodel description using RDF from ComVantage deliverable D3.1.26 (section 3.3.10 of the
deliverable). However, this implementation still deviates a bit from the specification of the
deliverable to strike a balance between usability and complexity of implementation and therefore
omits some of the more complicated cases. Also additional concepts are added, because of the
difference between the two formats.

4.1.1 Metamodel descriptions
The XML structure expected for the transformation looks as follows (note that in most cases the
order is irrelevant):
 library
 attributes
 attribute (with name “Modi”)
 value (containing the model type descriptions in LEO-XML7 format)

 classes
 class (with attribute “name”) [optional]
 attributes [optional]
 xsd:any (with attribute “name” and [optional] attribute “type”)
 facets
 facet [optional]

 relationclass (with attribute “name”) [optional]
 attributes [optional]
 xsd:any (with attribute “name” and [optional] attribute “type”)
 facets
 facet [optional]

 recordclass (with attribute “name”) [optional]
 attributes [optional]
 xsd:any (with attribute “name” and [optional] attribute “type”)
 facets
 facet [optional]

Note that in the current implementation “Attribute profiles” are completely ignored. Additionally all
the attributes used by model types have to be in a class with the name “__ModelTypeMetaData__”.
Also it does not specifically check for the element type of the children of the “attributes” element for

6 It can be accessed through the OMILab Repository in the Design phase. The documents name is “ComVantage
Core Modelling Method Specification”
7 The proprietary ADOxx format serialized as XML.

22

“class”, “relationclass” and “recordclass”. The implementation also does not specifically cover most
of the different cases to handle tables described in D3.1.2. Instead it considers tables to be ordered
lists of objects (rdf:List).

The above described structure is used to access information about the metamodel and based on this
create the RDF description8:

1. First some standard meta²-model statements are added (cv:Model is a rdfs:Class,
cv:Modelling_object is a rdf:Class etc.)

2. Then the attribute with the name “Modi” is parsed for all the used model types and for each
Model type:

a. Statements are added that denote: Model type rdf:type cv:m_Model
b. When the model type has custom attributes

i. Find the notebook definition and use it to process the attributes
c. Names of all the classes used in the model type are stored in a set Used classes

3. For every “class” element in “classes” as Class
a. If it is in Used classes

i. Statements are added that denote: Class rdf:type cv:o_Modelling_object
ii. All of its attributes (all children of the “attributes” element) are processed

4. For every “relationclass” element in “classes” as Relation class
a. If it has attributes besides the default attributes

i. Statements are added that denote: Relation class rdf:type
cv:r_Modelling_relation_a

ii. All of its attributes (all children of the “attributes” element) are processed
b. Otherwise

i. Statements are added that denote: Relation class rdf:type
cv:r_modelling_relation_na

ii. Also statements are added that it is treated as a connector in ADOxx:
Relation class rdf:type cv:CONNECTOR (necessary for transformation of
models back into XML)

5. For every “recordclass” element in “classes” as Record class
a. If it is in Used classes

i. Statements are added that denote: Record class rdf:type cv:o_Table_object
ii. All of its attributes (all children of the “attributes” element) are processed

6. The attributes “Name” and “Version” are added to the RDF description (since they are
implied by the metamodel description):

a. Stating that cv:a_Name rdf:type cv:a_attribute
b. And cv:a_Name rdfs:subPropertyOf rdfs:label
c. As well as cv:a_Version rdf:type cv:a_attribute

The procedure for processing attributes is (Parent is used to denote the element the attribute
belongs to):

1. If the type is “interref”
a. Statements are added that denote: Attribute rdf:type cv:r_modelling_relation_na
b. Also that: Attribute cv:used_in Parent

2. Otherwise if the type is “record”

8 Variables are written in italic.

23

a. Statements are added that denote: Attribute rdf:type cv:a_table_attribute
b. Also that: Attribute cv:used_in Parent

3. Otherwise if the name is “HlpTxt”
a. Adds a rdfs:comment to Parent

4. Otherwise
a. Statements are added that denote: Attribute rdf:type cv:a_attribute
b. Also that Attribute cv:used_in Parent

The above descriptions do not specify all of the statements that are added and focuses on the
important ones. Statements that add labels, comments or reference rdf/rdfs concepts are mostly
omitted. Also it extends the names used for the URI with additional prefixes to separate into four
categories:

• “m_” for URIs that deal with model types
• “o_” for URIs that deal with modelling objects
• “r_” for URIs that deal with relations
• “a_” for URIs that deal with attributes

This approach is chosen since there can be cases where for example a class, a model type and an
attribute have the same name. Therefore to still be able to separate them their names are extended
with those prefixes for the URIs.

Also the description of the metamodel should be extended with the following statements if
applicable:

• Indicate that an attribute denotes the URI of an object
 This is achieved by stating that the attribute is a rdfs:subPropertyOf owl:sameAs. The

application provides an “equivalence” button in the Tree view to state this.
• Indicate that a relation without attributes denotes additional types of an object
 This is achieved by stating that the relation is a rdfs:subPropertyOf rdf:type. The

application provides a “membership” button in the Tree view to state this.
• Indicate that a table contains triples (“Direct transformation into triples” from the different

table cases from D3.1.2)
 This is achieved by stating that the corresponding table attribute (rdf:type

cv:a_table_attribute) is also of the type cv:direct_transformation (rdf:type
cv:direct_transformation)

 Additionally state for one of the tables attributes that it is a sub-property of
(rdfs:subPropertyOf) rdf:subject, for a different column that it is a sub-proeprty of
rdf:predicate and for another column that it is a sub-proeprty of rdf:object. Note that the
current implementation of the Model transformation substitutes the parent object of the
table for each of the three columns that is missing (e.g. if no column is specified to
represent rdf:subject, then the object the table is in will be used as the subject of the
statement). Also the Model transformation currently expects to find simple attribute
values in those columns (not e.g. Interrefs) .

4.1.2 Model descriptions
The XML structure expected for the transformation is specified by the “adoxml31.dtd”. However, the
current implementation does not consider “Attribute profiles” in any way. The procedure for creating
the RDF description of models relies on having access to the metamodel description in RDF (simply

24

called metamodel here) and on the use of labels in the metamodel to bridge with the names of
“name” attributes of elements from the XML. The procedure consist of the following steps:

1. Names of attributes that denote the URI are retrieved from metamodel and stored in a set
Sameas.

2. For ever MODEL element
a. Create a graph for the model (model graph)
b. Add type, name and version statements about model graph in :graphmetadata
c. Statements about the library-type of the model graph are added in :graphmetadata

(necessary for transformation back into XML)
d. Process all MODELATTRIBUTE elements of the model (if available)
e. Process all RECORD elements of the model (if available)
f. For every INSTANCE element of the model (instance)

i. If the instance type is not part of the metamodel then skip it
ii. Create a resource representing the instance

iii. Add name and type statements about instance in model graph
iv. Process all ATTRIBUTE elements of instance
v. Process all RECORD elements of instance

vi. Postpone all INTERREF elements of instance
g. For every CONNECTOR element of the model (relation)

i. If the relation is not part of the metamodel then skip it
ii. Get the source and the target for the relation in model graph

iii. If source, target or relation type is missing then skip the relation
iv. If the relation type is a cv:r_modelling_relation_na

1. Add a simple statement in the form of “source relation-type target”
in model graph

v. Else if the relation type is a cv:r_Modelling_relation_a
1. Create a new resource representing the relation
2. Add type, from and to statements about relation in model graph
3. Process all ATTRIBUTE elements of relation

vi. Else if the relation name equals “Is inside”
1. Add a simple statement “target cv:contains source” in model graph

3. For every postponed interref
a. If the interref (based on name) is not part of the metamodel then skip it
b. Find the target of the interref and the graph where the target is located (target’s

graph)
c. If the interref denotes type (is rdfs:subPropertyOf rdf:type)

i. Add the target as a new rdf:type to the source of the interref
ii. Add a statement denoting in which graph the target is found

(cv:described_in, only when the target is not a graph)
d. Otherwise

i. Add a statement in the form of “source interref target”
ii. Add a statement denoting in which graph the target is found

(cv:described_in, only when the target is not a graph)
iii. Add the interref statement also in target’s graph
iv. Add a statement in target’s graph denoting in which graph the source is

found (cv:described_in)

25

The procedure for processing attributes (ATTRIBUTE elements) is (Parent is used to denote the
element the attribute belongs to):

1. If the attribute (based on name) is not part of the metamodel or it has no value then skip it
2. If the attribute value is a URI then

a. Create a URI resource for the value as object
3. Otherwise

a. Create a literal resource for the value as object
4. Add a statement to model graph in the form of “Parent attribute object”

The procedure for processing tables (RECORD elements) is (Parent is used to denote the element the
attribute belongs to):

1. If the table name has a resource of type cv:direct_transformation then for every ROW as row
a. For every ATTRIBUTE of row as column

i. If it denotes the subject, then set subject to a URI based on its value
ii. Otherwise if it denotes predicate, then set predicate to a URI based on its

value
iii. Otherwise if it denotes object

1. Try to set object to a URI based on its value
2. If the previous fails, then set object to a Literal based on its value

b. All of subject, predicate and object that have not been set are set to Parent
c. Add a statement to model graph in the form of “subject predicate object”

2. Else If the table name is part of the metamodel then9
a. Create an anonymous rdf:List (refereed as list)
b. Add a statement to model graph in the form of “Parent table-name list”
c. For every ROW as row

i. Create a resource representing the row
ii. If more rows are present

1. Add the resource to the list as rdf:first
2. Create a new anonymous rdf:List (referred to as second list)
3. Add second list to the list as rdf:last
4. Set list to second list

iii. Otherwise (this is the last row)
1. Add the resource to the list as rdf:last

iv. Process all ATTRIBUTE elements of row
v. Postpone all INTERREF elements of row

Note that in all the cases a resource is created to represent a model, an instance or a relation the
application first searches for an attribute denoting the URI using the Sameas set. If there is no such
attribute available then a URI is created based on the objects type, id and name (and possibly others
depending on the case).

9 The actual code is more complicated due to the way lists in rdf are structured (only consisting of rdf:first and
rdf:last), but achieves the same thing.

26

4.2 Storage of queries
Queries in the application consist of at least a name and the query itself. Additionally there are “Local
queries” which extend queries by also adding a type denoting if they should be used to add or
remove triples for manipulation. Because of this a query can have up to three members/attributes:

• The query name
• The query value
• The query type

However, to simply the storage and also allow the queries to be used outside of the RDF Export they
are stored in simple text files. To prevent the loss of data certain “hacks” are used:

• The name of the file (minus the file extension) denotes the name of the query.
• The content of the file contains (for the most part) the query value.
• The query type is indicated by a comment in the first line:

o Add-type queries don’t contain the comment
o Remove-type queries contain the comment “#remove” as the first line of the query

While the name and content of the query are easily handled, the application takes care to hide the
query type from the user as best as possible. Therefore the first line comment is not shown for “Local
queries” in the Local query panel and is instead indicated by the colour of the query name and the
radio buttons when a query is selected.

	1 General Procedure
	2 Using the RDF Export
	2.1 General User Interface
	2.1.1 Icons
	2.1.2 Server management
	2.1.3 Tree view
	2.1.4 Queries - Local queries and Remote queries

	2.2 Metamodel Management
	2.2.1 Loading from a file
	2.2.2 Downloading from a server
	2.2.3 Managing the metamodel
	2.2.4 Saving to a file or uploading to a server

	2.3 Model Management
	2.3.1 Loading from a file
	2.3.2 Downloading from a server
	2.3.3 Managing the model
	2.3.4 Saving to a file or uploading to a server

	2.4 Query Server
	2.4.1 Loading, managing and saving queries
	2.4.2 Executing queries

	2.5 Procedure for serialization of models as Linked Data

	3 Use with a Quad Store
	3.1 Publishing to Virtuoso
	3.2 Publishing to Sesame

	4 Finer details of the RDF Export
	4.1 Transformation and structure of (meta-)model descriptions
	4.1.1 Metamodel descriptions
	4.1.2 Model descriptions

	4.2 Storage of queries

