

284928
Collaborative Manufacturing Network

for Competitive Advantage

D3.1.2 – Specification of Modelling Method Including
Conceptualisation Outline

(public)

Grant Agreement No. 284928
Project acronym ComVantage
Project title Collaborative Manufacturing Network for Competitive Advantage

Deliverable number D3.1.2
Deliverable name Specification of Modelling Method Including Conceptualisation

Outline
Version V 1.0

Work package WP 3 – Secure Information Model
Lead beneficiary UNIVIE
Authors Dimitris Karagiannis (UNIVIE), Robert Buchmann (UNIVIE), Patrik

Burzynski (UNIVIE), Jasmin Brakmic (UNIVIE)
Reviewers David Orensanz (BOC), Patricia Ortiz (INNO)

Nature R – Report
Dissemination level PU – Public
Delivery date 29/01/2014 (M29)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 2

Executive Summary

This report presents the conceptualisation approach and results for the development of the ComVantage
modelling method. It is the second iteration and it is a support document for the implementation phase
developed in task 3.4, thus it outlines a set of method concepts and constructs, to be implemented by the
modelling prototypes. For the current iteration, the method refines the conceptual coverage given by the
first iteration (D3.1.1) and its initial adaptations (D6.2.1, D7.2.1, D8.2.1).
Methodologically, the refinement takes a top-down integrative approach, filling identified gaps, removing
redundancies and extending the method scope with additional coverage. The goal is to support the
modelling of requirements for mobile apps, Linked Data and access control, within a business context
described with the means proposed in the initial iteration. The models created with the proposed method
become a knowledge externalisation channel, between stakeholders working on different levels of
abstraction and detail, as well as between the design time and run time of the ComVantage architecture.
Particular emphasis is placed on model interoperability, which is enabled through an RDF serialisation of
models using a generic schema, independent of model semantics. Thus, models become themselves Linked
Data resources, opening significant potential for model awareness on the run-time side, as reflected by the
app orchestration approach proposed in WP5.
In further steps, the method will be adjusted with final adaptations to be developed in tasks 6.2, 7.2 and
8.2.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 3

Table of Contents

EXECUTIVE SUMMARY .. 2

TABLE OF CONTENTS .. 3

LIST OF FIGURES ... 5

LIST OF TABLES ... 6

1 OVERVIEW .. 8

1.1 INTRODUCTION .. 8
1.2 SCOPE OF THE DOCUMENT .. 8
1.3 RELATED DOCUMENTS .. 9
1.4 TERMS AND ACRONYMS USED IN THIS DOCUMENT .. 9

2 THE COMVANTAGE MODELLING METHOD SPECIFICATION .. 10

2.1 APPROACH FOR MODELLING METHOD REFINEMENT .. 10
2.1.1 Envisioned Modelling Procedure ... 11
2.1.2 Assumptions about the Meta²-model ... 12

2.2 STRUCTURE OF MODELLING METHOD ... 12
2.3 GENERAL MODELLING METHOD CONCEPTS .. 14

2.3.1 Aspect-independent Concepts... 14
2.3.2 Generally used Properties of Concepts ... 16

2.4 ASPECT-SPECIFIC MODELLING METHOD CONCEPTS ... 16
2.4.1 Concepts in Motivator Aspect ... 17
2.4.2 Concepts in Participant Aspect .. 18
2.4.3 Concepts in Procedural Aspect .. 19
2.4.4 Concepts in Collaborative Aspect .. 22
2.4.5 Inter-Aspect Concepts ... 23

2.5 SCOPE-SPECIFIC MODELLING METHOD CONCEPTS ... 24
2.5.1 Specialised Concepts in Structural Aspect ... 25
2.5.2 Specialised Concepts in Behavioural Aspect .. 38

2.6 ASSIGNMENT OF CONCEPTS TO ASPECT SPECIALISATIONS ... 46
2.6.1 Business Scope ... 47
2.6.2 Enterprise Scope .. 50
2.6.3 Requirements Scope .. 51
2.6.4 App development Scope .. 54
2.6.5 App execution set-up Scope .. 56
2.6.6 Evaluation Scope .. 57

2.7 MECHANISMS AND ALGORITHMS .. 62
2.7.1 Determine Instances/Templates for required Capabilities ... 62
2.7.2 Derivation of Participant collaboration ... 62
2.7.3 Interaction stepper .. 63
2.7.4 Derivation of Orchestration ... 63

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 4

2.7.5 Gathering access requirements ... 64
2.7.6 Access requirement coverage check ... 64
2.7.7 Calculation of KPIs/Variables ... 64
2.7.8 Simulation of Procedural models ... 65
2.7.9 Business model evaluation .. 65
2.7.10 Serialisation of models as Linked Data .. 66
2.7.11 Comparison of model serialisations in Linked Data ... 66
2.7.12 Model querying .. 66

3 IMPLEMENTATION SPECIFIC RECOMMENDATIONS ... 68

3.1 RECOMMENDED CLASSES, RELATIONS AND ATTRIBUTES ... 68
3.2 PROPOSED NOTATION GUIDELINES ... 73
3.3 RECOMMENDED APPROACHES FOR MECHANISM AND ALGORITHM IMPLEMENTATIONS ... 89

3.3.1 Recommended approach for Determine Instances/Templates for required Capabilities 89
3.3.2 Recommended approach for Derivation of Participant collaboration .. 90
3.3.3 Recommended approach for Interaction stepper ... 91
3.3.4 Recommended approach for Derivation of Orchestration .. 93
3.3.5 Recommended approach for Gathering access requirements .. 95
3.3.6 Recommended approach for Access requirement coverage check .. 95
3.3.7 Recommended approach for Calculation of KPIs/Variables .. 96
3.3.8 Recommended approach for Simulation of Procedural models ... 96
3.3.9 Recommended approach for Business model evaluation ... 98
3.3.10 Recommended approach for Serialisation of models as Linked Data ... 98
3.3.11 Recommended approach for Comparison of model serialisations in Linked Data 103

4 OUTLOOK AND CONCLUSION ... 104

5 REFERENCES .. 105

6 APPENDIX ... 106

6.1 EXAMPLE QUERY FOR CAPABILITY MATCHING ... 106
6.2 METAMODEL DIAGRAMS ... 107

DISCLAIMER .. 114

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 5

List of Figures

Figure 1: Positioning of the current document in the ComVantage task flow .. 9
Figure 2: Process of refinement from previous specification ... 11
Figure 3: Understanding separable decomposition .. 16
Figure 4: Possible assumption based on proposed Action/Event alternation for followed by relations 21
Figure 5: More intuitive interpretation of multiple incoming followed by relations 21
Figure 6: Global Procedural elements with context assigned to followed by relations 22
Figure 7: Proposed solution for element reuse using Representative elements .. 22
Figure 8: Dependency control of AND type, where occurrences x and y should be the same 50
Figure 9: Example mockup for the Value structure group .. 81
Figure 10: Example mockup for the Market structure group ... 82
Figure 11: Example mockup for the Business structure group ... 82
Figure 12: Example mockup for the Location structure .. 82
Figure 13 Example mockup for the Value exchange flow group ... 83
Figure 14: Example mockup for the Business model group .. 83
Figure 15: Example mockup for the Enterprise structure group ... 83
Figure 16: Example mockup for the Business process group .. 84
Figure 17: Example mockup for the Participant collaboration group ... 84
Figure 18: Example mockup for the Mobile support structure group .. 85
Figure 19: Example mockup for the Information space group .. 86
Figure 20: Example mockup for the Interaction flow group ... 86
Figure 21: Example mockup for the Navigation map group .. 87
Figure 22: Example mockup for the Orchestration group ... 87
Figure 23: Example mockup for the Notification exchange group .. 88
Figure 24: Example mockup for the KPI structure group .. 88
Figure 25: Example mockup for the Evaluation process group ... 89
Figure 26: Example mockup for the Interaction stepper .. 92
Figure 27: Metamodel for high abstraction level (General concepts) .. 107
Figure 28: Metamodel for middle abstraction level (Aspect-specific concepts) ... 108
Figure 29: Metamodel for low abstraction level (Scope-specific concepts) ... 109
Figure 30: Metamodel concept hierarchy (Templates) ... 110
Figure 31: Metamodel concept hierarchy (other) ... 111
Figure 32: Metamodel relation hierarchy ... 112
Figure 33: Metamodel for low abstraction level (Scope-specific concepts) of the recommended

implementation .. 113

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 6

List of Tables

Table 1: Overview of model specialisations for different Scopes ... 14
Table 2: Concepts of Motivator Aspect ... 17
Table 3: Relation concepts of Motivator Aspect ... 17
Table 4: Concepts of Participant Aspect .. 18
Table 5: Relation concepts of Participant Aspect .. 18
Table 6: Concepts of the Procedural Aspect ... 20
Table 7: Relation concepts of the Procedural Aspect.. 20
Table 8: Concepts of the Collaborative Aspect ... 22
Table 9: Relation concepts between the different Aspects .. 24
Table 10: Scope-specific concepts and relation concepts of the Motivator Aspect 28
Table 11: Scope-specific concepts and relation concepts of the Participant Aspect 37
Table 12: Scope-specific concepts and relation concepts of the Procedural Aspect 44
Table 13: Scope-specific concepts and relation concepts of the Collaborative Aspect 46
Table 14: Concepts in Value structure group .. 47
Table 15: Concepts in Market structure group ... 47
Table 16: Concepts in Business structure group ... 48
Table 17: Concepts in Location structure group ... 48
Table 18: Concepts in Value exchange flow group .. 48
Table 19: Concepts in Business model group .. 49
Table 20: Formulas for calculating occurrences in Business models .. 49
Table 21: Concepts in Enterprise structure group... 50
Table 22: Concepts in Business process group .. 51
Table 23: Concepts in Participant collaboration group ... 51
Table 24: Concepts in Permission pool group ... 52
Table 25: Concepts in Mobile support structure group .. 52
Table 26: Concepts in Information space group.. 53
Table 27: Concepts in Requirements process group ... 54
Table 28: Concepts in the Interaction flow group ... 55
Table 29: Concepts in the Navigation model group .. 55
Table 30: Concepts in Orchestration group ... 56
Table 31: Concepts in Notification exchange group .. 57
Table 32: Concepts in KPI structure group .. 58
Table 33: Concepts in Evaluation process group ... 58
Table 34: Recommended functions for Variables and KPIs ... 62
Table 35: Recommended classes and attributes ... 71
Table 36: Recommended relations and attributes .. 73
Table 37: Proposed notations for classes .. 79
Table 38: Examples of alternative notations for Points of interaction ... 81
Table 39: Linked Data constructs recommended for the serialisation ... 100

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 7

Table 40: Recommended transformation of modelling objects into Linked Data .. 103

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 8

1 OVERVIEW

1.1 Introduction
This is the second iteration (of two) of a deliverable whose goal is to specify the envisioned ComVantage
modelling method as knowledge structure comprising several building blocks: a modelling procedure, a
modelling language and functionality that takes input from model information. The first iteration had a
broad focus on supply chain management, while this iteration is rather focused on modelling business
processes with requirements for the technological specificity of ComVantage, namely mobile apps, Linked
Data and access control. The models aim to semantically connect these requirements with the business
context (business model), process evaluations, process motivators and involved assets or entities. Further
refinements, capturing the domain specificity of the application areas Plant Engineering and
Commissioning, Customer-oriented Production, Mobile Maintenance (WP6, WP7 and WP8) and change
requests based on hands-on experience with the intermediary versions of the modelling prototypes
(D3.4.1) will be covered by the final adaptation deliverables (D6.2.2, D7.2.2, D8.2.2).

The document is organised as follows: this introduction is followed by a scope statement correlated with
the description of work, a positioning of the document in the context of related deliverables and a list of
terms and acronyms used in the document. Section 2.1 bridges the approaches of the first and the current
iteration, with the envisioned modelling procedure described in section 2.1.1. Section 2.2 gives an overview
of the updated modelling stack. Sections 2.3-2.5 present the high abstraction concepts giving the semantic
basis for further specialisations across the modelling stack. Section 2.6 groups these concepts according to
multiple scopes covered by the method (from the business model to app requirements and evaluation).
Section 2.7 suggests functionality that can support a modeller in further processing various parts of the
modelling stack. Section 3 shifts the abstraction level to implementation recommendations where concrete
guidelines are given regarding modelling notation and functionality. The document ends with conclusions
and an outlook to future developments envisioned for the adaptation tasks.

1.2 Scope of the Document
According to the description of work, "this task aims to design the business process modelling method for
ComVantage and conceptualisation as a basis for the development on a meta-modelling platform. This
includes the design of a hybrid, process-based method for dynamic collaboration processes between
different user roles and regarding different types of information".

The business process modelling paradigm is integrated with the technological specificity adopted by
ComVantage, where activities rely on two key types of IT resources: mobile support and Linked Data. The
first iteration of the method specification took a bottom-up approach, by designing a hybrid metamodel
integrating concepts identified in application area scenarios (e.g. product, service, role, app, business
entity) with broader practices coming from the supply chain and business process management literature
(SCOR, VRM, e3 value etc.).

The current iteration refines the conceptual landscape with a top-down approach, driven by a set of
concepts of higher abstraction, capturing semantics that recur throughout the initial specification. In
addition, new elements come into focus, such as evaluation and information space modelling, and a more
cohesive semantic integration is applied on the existing elements. Further adaptations (tasks 6.2, 7.2 and
8.2) are expected to reflect domain specificity from the application areas and changes derived from hands
on experience with the currently available implementations of the method.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 9

1.3 Related Documents
The current document's position in the project context and with respect to related deliverables and tasks is
presented in Figure 1. The relations expressed in the figure are as follows:
 Application areas' refined scenarios and functional requirements provided concepts to be reflected

by the models;
 The modelling method, as it is presented in the current task will be further specialised in the

adaption deliverables from WP6, 7 and 8;
 The modelling method also relates to technological work packages through an RDF export of

models enabling model analysis and processing outside a modelling tool;
 The modelling method is being implemented in modelling prototypes within task 3.4.

Figure 1: Positioning of the current document in the ComVantage task flow

1.4 Terms and Acronyms used in this Document
ERM (ER-Model) – Entity-Relationship Model, a model focusing on describing entity (/object) types, their
attributes and relations between them.

KPI – Key Performance Indicator

OMI – Open Models Initiative

POI – Point of interaction (improvised term introduced through D8.2.1 to indicate an app feature of
component that enables the user-app interaction)

RDF – Resource Description Framework, provides the format for model interoperability

SPARQL – the standard language for querying Linked Data expressed as RDF

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 10

2 THE COMVANTAGE MODELLING METHOD SPECIFICATION

2.1 Approach for Modelling Method Refinement
The first iteration of the modelling method (as specified in D3.1.1 and its adaptations) has been the result
of a bottom up integration and a knowledge acquisition effort taking input from the scenario descriptions,
the generic project requirements (further reflected in the conceptual coverage of the project ontologies)
and the literature. The input was further structured in model types, resulting in a modelling stack and a
metamodel developed incrementally in the first stage of the project.

The gained domain insight and an analysis of the resulted semantic landscape lead to the identification of a
set of recurring high level generic concepts. For example:

 control flow aspects have been recurring on various levels of abstraction or detail – in business
process models and thread models (D3.1.1), in interaction flows or SIPOT models (D8.2.1);

 decomposition-driven modelling approaches have been identified in product models, market
models, organisational models (D3.1.1, D7.2.1), service models, machine state models, app models
(D8.2.1);

 collaboration views have been recurring in business models, scope models (D3.1.1).

This inspired a top-down revision of the modelling stack, driven by a specialisation of the high level generic
concepts across several scopes dictated by the ComVantage multifaceted domain: the business scope, the
requirements scope, the evaluation scope and others, to be detailed further in this section. An improved
stack, structured somewhat similarly to Zachman’s framework (Zachman, 1987) has been designed in order
to capture the new cohesion and to enable the identification of gaps to be filled. Multiple changes have
been thus triggered in the metamodel, for example:

 merging product modelling (D3.1.1, D7.2.1) and service modelling (D8.2.1) in a common value
structure model type that covers any mix of products and services (allowing “product servitisation”
models), including the variability of their decomposition (inspired by feature-oriented analysis in
software production lines (Kang et al., 1990);

 splitting the SIPOT model type (D8.2.1) in order to obtain finer granularity of app and data
requirements;

 replacing purely visual models (causality diagram from D3.1.1) with semantically richer models (KPI
influence structures);

 creating new model types, especially those reflecting interactions between different types of
entities or assets;

 shifting the focus of simulation from a system dynamics approach (hinted at, but not specified in
D3.1.1) towards a process-based approach in order to satisfy the description of work requirement
for deriving workflow efficiency indicators from models.

This refinement process is depicted in Figure 2. The structure of this document will reflect this top-down
refinement and a modelling tool implementer may stop at the desired level of abstraction (reading lower
specialisations and implementation guidelines as recommendations). However, specialised versions of the
abstract concepts are more useful than generic ones, and should be preferred. In some cases, generic
concepts are not further specialised, meaning that the lowest available specialisation should be used.

We also emphasise the fact that users should be aware that they are modelling their own perspective,
hence the data stored in models should reflect this perspective (for example, market shares for market
segments).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 11

Figure 2: Process of refinement from previous specification

2.1.1 Envisioned Modelling Procedure
The modelling procedure drives the new modelling stack structure. The aim for the current iteration is to
fulfil the description of work requirement of providing modelling means for key aspects such as mobile
apps, Linked Data and access policies. Process evaluation and collaboration must also be described. The
envisioned procedure is as follows:

1. The modeller describes the business context (including the business model mapped on the targeted
market structure and the values to be provided);

2. The modeller describes the operational business processes that must be performed in order to
sustain a regular enactment of the value exchanges envisioned by the business model;

3. The modeller describes app requirements along the operational business processes;

 In a collaborative approach, app designers refine these requirements to early mockup
proposals in order to validate their interpretation on requirements;

4. The modeller describes data requirements along the operational business processes and in relation
with the app requirements;

 In a collaborative approach, app designers refine these requirements in order to design a
required information space;

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 12

5. The modeller describes permission requirements for the required information;

 In a collaborative approach, information owners collect the access requirements and
extend the models with granted permissions based on decisions of the data owners;

6. The modeller evaluates the efficiency of the modelled control flows with respect to: a) various
abstractions of the general notions of “cost/value” (estimated time, money, different types of
wastes or value consumptions); b) semantically modelled KPIs for which data sources have been
identified and evaluation processes have been modelled (independent of the general flow of this
procedure).

2.1.2 Assumptions about the Meta²-model
As (Kern et al, 2011) indicates, most meta-metamodels rely on the dichotomy between concepts and
properties (relations, attributes) or can be reduced to such a dichotomy. We mention however several
assumptions made about the meta-metamodel in order heighten the level of generality (hence reuse) of
the method compared to its initial iteration (which followed some constraints of the ADOxx metamodelling
platform):

 Relations are binary; relations of higher arity (with higher number of participants) can be created
by adding an intermediate concept linking through binary relations to all required participants;

 Relations are concepts, so they can be endpoints for other relations; a workaround similar to the
previous point can be employed in implementations that do not support this;

 Unlike the approach of D3.1.1, there is no more prescribed delimitation of models and model
types. The partitioning of the conceptualisation outcome in models should be driven by
implementation (mostly usability) decisions. The concept groups to be described in the next
sections for various scopes and specialisations can be interpreted for implementation purposes as
“model types”, but this is not mandatory from a specification point of view (they can be merged or
further split);

 Concept names should be unique (hence reusing a concept name means reusing a concept). The
modelling objects should get unique or reused identifiers relative to their potential usage when
models are exported in the Linked Data cloud (in order to support model linking);

The assumptions are also made in relation to the proposal of having models exported in the Linked Data
cloud, with each modelling object having a global identity (URI), possibly with properties relative to a
contextual graph representing the point of view of the model author and a base URI further indicating
model provenance.

2.2 Structure of Modelling Method
Through the refinement, several changes have been made to the structure of the modelling method. One
of those changes concerns the range of the described concepts. It now covers very generic concepts like
template, decomposition or implication, which are then further specialised towards more application
oriented concepts like activities or sequence relations. This gradual specialisation is described throughout
sections 2.3 (very generic concepts), 2.4 (aspect-specific concepts) and 2.5 (specialised aspect-specific
concepts).

Another change altered the modelling stack, by structuring its elements according to Scopes and Aspects.
Scopes depict different application domains like Enterprise or App development. They are meant to be
selected and applied as required by the use case. This also means that additional Scopes can be added if
necessary. The ComVantage Modelling Method covers the following Scopes:

 Business – description of high level of business and revenue, describing business scenarios and the
partners involved in those.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 13

 Enterprise – description of products or services and how they are accomplished through business
processes as well as the involved participants.

 Requirements – capturing requirements on participants for business processes and describing how
they should be employed.

 App development – description of apps, their structure and the requirements posed on them.
 App execution set-up – description of how certain apps should be orchestrated.
 Evaluation – description of (performance) indicators and how they are evaluated.

The mapping of the Scopes on the procedure steps is as follows:
Step 1. uses the Business Scope
Step 2. uses the Enterprise Scope
Step 3. uses the Requirements, App development and App execution set-up Scopes
Step 4. uses the Requirements, App development and App execution set-up Scopes
Step 5. uses mostly the Requirements Scope and other Scopes as required
Step 6. uses mostly the Evaluation Scope and other Scopes as required

Aspects on the other hand are fixed and provide a certain view on a Scope. The Aspects considered by the
modelling method are:

 Behavioural – this Aspect focuses on the description of task dependent elements, mostly through
implications of sequence or dependency.

o Procedural – this Aspect focuses on actions that have to be performed and their relation to
one another according to their execution sequence in time. It can be considered a facet of
the Behavioural aspect.

o Collaborative – this Aspect focuses on the collaboration between Structural elements
according to one or several Procedural descriptions. It can be considered a facet of the
Behavioural aspect.

 Structural – this Aspect focuses on the description of element structures through decomposition.
o Motivator – this Aspect focuses on the motivators for the Procedural aspect, e.g. the

shifting of values like money or specific products during a process execution, and their
structure. It can be considered a facet of the Structural aspect.

o Participant – this Aspect focuses on the participants of a Procedural aspect, e.g. the liable
entities and assets employed in the execution of a process, and their structure. It can be
considered a facet of the Structural aspect.

The elements of the different Aspects are linked with one another and in the case of the Structural Aspect
an element can be a Participant in one Scope and a Motivator in another Scope. However, since the
modelling method follows a (business) process centric approach, the Behavioural Aspect is usually in the
centre of those links. Table 1 shows the Scopes and their specialisations of the Behavioural Aspects as well
as the recommended focus on specialisations of the Structural Aspect. It focuses on the parts necessary to
cover the envisioned procedure of the ComVantage Modelling Method described in section 2.1.1.

Aspect
Scope

Behavioural Structural
Procedural Collaborative Motivator focus Participant focus

Business Value exchange
flow Business model

Value structure

Market and
Business structure

Enterprise Business process Participant
collaboration

Enterprise
structure

Requirements Requirements
process

Participant
collaboration Asset structure

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 14

Aspect
Scope

Behavioural Structural
Procedural Collaborative Motivator focus Participant focus

App development Interaction flow Navigation model Mobile support
structure

App execution
setup Orchestration Notification

exchange
Mobile support

structure

Evaluation Evaluation process Participant
collaboration KPI structure

Enterprise
structure and

Information space

Table 1: Overview of model specialisations for different Scopes

Metamodels for the different abstraction levels, as well as describing the concept hierarchy can be found in
the appendix (section 6.2, Figure 27 through Figure 32).

2.3 General Modelling Method Concepts
In this section the general concepts, which are independent of any Aspect or Scope, are described. Since
they are recurring on multiple levels of abstractions they will be presented once in this section. They
provide a common ground and are therefore often specialised by more specific concepts.

2.3.1 Aspect-independent Concepts
The here presented general concepts are called Aspect-independent, because they do not belong to one
specific Aspect and instead are used in several or sometimes even all Aspects.

2.3.1.1 Templates, Instances and Instantiation
Throughout this document, we are referring to modelling constructs of type “instance” and “template”,
which might cause confusion with other two popular uses of the term “instance”:

 In context of the “model-reality instance” relation, which is often implied in business process
modelling, where the instance is a reality enactment of a model - see (Weske, 2007);

 In context of the “metamodel-instance model”, which is often implied in metamodelling.

For our approach, templates represent sets of instances, meaning that instances can fit in the template.
Templates can generally be considered a variation space specified and limited through requirements or
capabilities. Therefore instances of a template also fulfil the capabilities posed by it. In some cases
templates can be so specific that only one instance can fit, making it difficult to properly distinguish
between the two. Also templates can represent both existing (as-is) and possible (to-be) instances. During
an actual reality enactment, templates have to be replaced by instances, either by finding available ones or
by creating new instances.

Therefore, for our purposes, instances represent things that are on the lowest level of specialisation that is
of modelling interest. Hence they can represent different things than instances found in the real system
under study. For example, while a “performer” modelling instance would have a 1-to-1 mapping to a real
person, an information modelling instance could represent multiple records different from one execution
to another, or an application modelling instance could represent multiple software licenses running on
multiple computers that can be involved in different executions. Therefore instances (in the sense used
here) can be further instantiated in the reality enactment; but this is not in the scope of the current
conceptualisation.

To summarise, throughout this document “instance” will be used relative to “template”, and both refer to
specific types of modelling objects. Instantiation simply denotes the explicit descriptive relation between
instances and templates, indicating into which templates an instance fits. The relation is named “instance
of” and the inverse is “has instance”.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 15

2.3.1.2 Inclusion types and Control elements
Inclusion types allow describing variability of dynamic parts where some choices have to be made. They
only apply on a certain set of relations on which they pose some conditions. Three inclusion types are
considered:

 AND - indicating an “All of” inclusion type, meaning that all of the relations have to be chosen.
Therefore it dictates how many and which specific relations should be used.

 OR - indicating a “Some of” inclusion type, meaning that one or more relations have to be
chosen. It forces neither a specific amount nor a selection of relations to be used.

 XOR - indicating a “One of” inclusion type, meaning that exactly one relation has to be chosen.
Therefore it dictates how many, but not which specific relations should be used.

An example for employing inclusion types is in a process model where the path splits. Depending on the
selected inclusion types either one, some, or all of the outgoing paths should be taken. Using an inclusion
type other than “AND” leads to variability. Therefore those are only applied for templates, since those can
represent more than one instance. By default, if an inclusion type is missing, assume the “AND” inclusion.
Since the inclusion types apply to a set of relations, is has to be possible to somehow group them together.
However, because the here presented approach only uses directed relations between two elements, the
grouping has to happen through a different element. A solution is achieved by using a Control element with
the desired inclusion type for a certain relation type. This control can be part of an already available
concept, or be a spate concept if necessary. They can be one of two types: Split or Merge1. The Split
indicates that the inclusion type should be applied on the outgoing relations, while the Merge does the
same only for incoming relations. Therefore they heavily depend on the direction of modelling. For example
in an organisation diagram an Organisational unit would be denoted as an AND-Split on decomposition
relations.

2.3.1.3 Decomposition
Decomposition is a relation describing of what smaller parts a larger part consists and is here called
“contains”, while the inverse is called “contained by”. Because of decomposition, the larger part can be
considered a (decomposition) set of the smaller parts linked through decomposition and some additional
unknown part as well. Similar to instantiation, a larger part can contain several smaller parts and a smaller
part can also be part of several larger things. There can however be exceptions to this, depending on where
the decomposition is applied. Also, the structure created through decomposition should form a directed
acyclic graph, meaning that loops in decomposition are not allowed.

Decomposition is generally described using the AND-inclusion type. However, variability can be achieved in
some cases by also using different ones. For example, when describing products, the OR- and XOR-inclusion
types can be used to denote the potential for customisability. In addition to the inclusion types the
decomposition relation can also be marked as separable or inseparable. An inseparable decomposition
indicates that the larger must contain the smaller, while with a separable relation the smaller part is
considered optional. Having a separable contains relation to a smaller thing is the same as a contains
relation to a decomposition set of XOR-inclusion type that itself contains the smaller thing and an empty set
(see Figure 3).

2.3.1.4 Implication
The implication, simply called “implication” here, is a relation that indicates what conclusion can be drawn
by which premises (or simply: when/if A, then B). This means that the premises are the source and the
conclusion is the target of the relation. Using the previously described inclusion types it is possible to build

1 Everything that is denoted as a Split or Merge is also a Control element for a certain type of relation. A concept can
also be a Control element for several different relations at once.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 16

complex premises and conclusions for implications. Also in most cases the implication is not used directly,
but specialised first, because it is too vague by itself. Additionally there is a special type of implication called
Prohibition. It is simply the implication of the negated conclusion. The inverse is simply called “inverse
implication”

Figure 3: Understanding separable decomposition

2.3.1.5 Specialisation
Specialisation is a relation which indicates that something is more specific than something else and is here
called “specialisation of”, while the inverse is called “generalisation of”. It is applied to Templates, where
the specialised template has more restrictive capabilities or boundaries than the general one. This also
means that in terms of space it cannot go outside the boundary set by the general template and because of
this all specialisation relations of an element are of AND-inclusion type. Also, because of the bottom-up
direction for modelling specialisation, the specialisations are Merges. So generally a Template can be the
specialisation of several other Templates, indicating an overlapping. There can however be exceptions to
this.

2.3.2 Generally used Properties of Concepts
Several general properties are recommended for most concepts. These properties are:

 Name / Label – Something for the human to identify the elements.
 Global identifier – An identifier for a global scope, which allows identifying elements anywhere. It

is recommended to use URI’s, in order to further link the elements to RDF descriptions and Linked
Data.

 Property collector – A collection of additional statements about the element. It is meant to allow
adding information about elements which is not covered through the properties prescribed by the
modelling method (e.g. using own custom types for the element) and should be machine usable.
Therefore it is recommended to use a structure from which RDF statements can be derived.

 Description – To describe the element further for a human and provide information for the human,
like why things are a certain way.

They should be applied where they are meaningful or useful. For example all of those make sense to be
available in Actions. For Decisions on the other hand a property denoting the question to be answered
would be more meaningful than a name or label. Constants directly represent a value and therefore it
makes little sense to attach a name to them. Implications usually do not need any of the above properties
besides maybe a description. It is left to the readers’ discretion to decide which of those properties to use
in which concepts.

2.4 Aspect-specific Modelling Method Concepts
The Aspect-specific concepts are more specific than the previously presented general (Aspect-independent)
concepts. They represent a granularity which is better fit for specific purposes, while still being general
enough to allow for use and further specialisation into Scope-specific concepts (see section 2.5). In order to
bridge the descriptions from the different aspects, special relation concepts are provided, and following the
process centric approach the behavioural aspect is involved in all of them. A short description about each

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 17

Aspect can be found starting on page 13. The descriptions of the concepts can be found in Tables 2 through
9.

The descriptions follow a more structured approach in this section through tables which provide the names
of the concepts, which other concepts they specialise (can be general or Aspect-specific concepts), their
description and in case of relations which types of elements they can connect and the name of the inverse
relation in brackets. Note that the hierarchy created by the general and Aspect-specific concepts does apply
everywhere. In order to prevent the collision of names used here for concepts and normal words the
names will be written in italics to distinguish them from the normal words (e.g. “Process” for the thing
depicted by the name given here and “process” for the general concept). Also some simple self-explanatory
names for sets of concepts are used (e.g. “Procedural element” for any element of the Procedural Aspect).

2.4.1 Concepts in Motivator Aspect
The following concepts are used to describe the motivators of an enterprise:

Concept Specialisation of Description

Motivating
value

Split-Decomposition
set (unspecified
inclusion type);
Template

It is a value that represents some form of motivator (like a product,
money or a KPI), so someone (e.g. person, organisation) holds some
value in it. It is usually changed by something (e.g. an activity), so
values are often “created” or “consumed”.

Description
function

Split-Decomposition
set (unspecified
inclusion type);

It is a function that is executed on the things it contains, like
composition, addition, subtraction etc. It should be used to detail
complex Motivating values.

Table 2: Concepts of Motivator Aspect

In addition the following relation concepts are used:

Concept Specialisation of Source(s)  Target(s) Description

mandates
(mandated
by)

implication
Motivator value 
Motivator value;
Description function

It indicates that one Motivating value also
mandates another Motivating value or
Description function. For example the
embroidery of a shirt (Motivating value) can
mandate or prohibit certain shirt colours.

specialised
value of
(general
value of)

specialisation of Motivating value 
Motivating value

It describes the specialisation of Motivating
values. One limitation here is that unlike the
general specialisation, a Motivating value
can be the specialisation of only one other
Motivating value.

Table 3: Relation concepts of Motivator Aspect

While the specialised concepts should be preferred, the general concepts should also be available in this
Aspect, most notably:
 contains (contained by) – It should be used to decompose Values and Value sets. When

instantiating such relations in the Motivator Aspect it should also be specified if they are separable
or inseparable.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 18

2.4.2 Concepts in Participant Aspect
In the Participant aspect the following concepts are used:

Concept Specialisation of Description

Participant
template

Split-Decomposition
set (AND-inclusion
type); Template

It is a template for participants (like a role). The actual
instance/execution of a process will however use Participant
instances.

Capability Participant template

It is a more detailed description of a Participant template, meant to
provide grounds for comparison of templates and instances (like a
skill). Depending on the point of view a Capability can be fulfilled or
required. Examples for human capabilities would be skills or
knowledge.

Access
means Capability

Represents a means of how a template or instance can be accessed
(e.g. through a query, a phone number etc.).
The Access means can also be separated into two subtypes: “Secured
access” or “Opened access”.

Participant
instance

Split-Decomposition
set (AND-inclusion
type); Instance

It represents an instance (i.e. something on the lowest level of
specialisation that is of interest) of a participant (like a person or an
app). The instance can be used during the execution of a process, if it
fits the requirements, which can be stated through the templates or
capabilities.

Liable entity ---
It is a participant that can hold responsibility, similar to a “legal
person” from law (like a person). It should be used as a second type
for templates, capabilities and instances.

Asset ---

It is the complement of Liable entity, i.e. a participant that cannot hold
responsibility (like a machine). An Asset can however be the cause of
something. It should be used as a second type for templates,
capabilities and instances.

Table 4: Concepts of Participant Aspect

In addition the following relation concepts are used:

Concept Specialisation of Source(s)  Target(s) Description
has
capability
(capability
of)

contains
(inseparable)

Participant template 
Capability

Special decomposition which explicitly
decomposes a template into its capabilities.

fulfils
(fulfilled by) instance of Participant instance 

Participant template

It indicates which templates and capabilities
an instance fulfils. The capability set of an
instance are all the Capabilities linked
through this relation.

owned by
(owns) implication Participant  Liable

entity

It is the implication that involving the Asset
also requires somehow the involvement of
the owner (e.g. their permission). In general
it denotes ownership.

Table 5: Relation concepts of Participant Aspect

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 19

While the specialised concepts should be preferred, the general concepts should also be available in this
Aspect, most notably:
 contains (contained by) – It should be used to decompose Templates and Instances. However, it

should not be used to decompose Templates into Instances or vice versa. When instantiating such
relations in the Participant Aspect it should also be specified if they are separable or inseparable.

 specialisation of (generalisation of) – It should be used to describe specialisation of Templates, in
most cases only between Templates of the same type.

In this Aspect also the control of access to the Assets is handled through “Resource usage policies”. Those
cover
 the Subject - the participant that can get access
 the Action - the action that can be performed by the Subject
 the Resource - the participant that is accessed, i.e. upon which the Action is performed

The idea is to describe those policies through permission rules, which state what is allowed. This means
that Subjects trying to perform an Action on a Resource for which no fitting permission rule is available
should be denied. Also a link could be established between Access means and permission rules, to indicate
upon which rules the means are based on (e.g. this means of access is available because of this permission
rule).

2.4.3 Concepts in Procedural Aspect
In order to capture procedural descriptions the following concepts are used:

Concept Specialisation of Description

Process

Split-Decomposition
set (unspecified
inclusion type);
Template

It is a set of Procedural elements, describing an Action from a higher
level of abstraction from a certain point of view. Its main purpose is to
provide an interface between descriptions from different Scopes for
the same Action without enforcing a specific granularity.

Action

Split-Decomposition
set (unspecified
inclusion type);
Template

An Action represents something that is performed in order to change
a certain state (i.e. “you Act”). They are triggered by an event and
performing them leads to an event, since otherwise the Action would
have been meaningless.
Performing an Action usually requires some form of resource or value,
like time, money, personnel, computer etc.
Generally the stages “Started” and “Finished” can be distinguished,
with “Finished” implying “Started”, and an Action being performed if it
has “Started” but not “Finished”.

Action type

Merge-
Specialisation set
(AND-inclusion
type); Template

An Action type represents the possible types of actions that can be
performed (like a read or a write action type). They can further be
described through specialisation.

Event

Split-Decomposition
set (unspecified
inclusion type);
Template

Represents the occurrence of certain changes in the state which are of
some form of interest (e.g. “Order arrived”, “One hour passed since
last execution”, “Machine analysed” etc.). Events are also both the
causes for starting Actions and the result of finishing other Actions.

Initiation
event Event

It represents an Event that starts a whole Process. Since it is from the
point of view of a specific process it is valid only in its context. This
means that the Initiation event of one process can be the Termination
event of another. Therefore, while the general Event itself can be
reused in another process, it does not mean that it is also an Initiation
event there.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 20

Concept Specialisation of Description

Termination
event Event

It represents an Event that ends a path in a whole Process, which can
be successful or not. Since it is from the point of view of a specific
process it is valid only in its context. This means that the Termination
event of one process can be the Initiation event of another. Therefore,
while the general Event itself can be reused in another process, it does
not mean that it is also a Termination event there.

Control
Implication set
(unspecified
inclusion type)

It allows controlling the sequence in a process through the available
inclusion and set types (i.e. AND, OR, XOR; Split, Merge). This control
is specific to a process. Therefore the reuse of the same Control
elements throughout several processes is limited, only reasonable in
processes of the same Process decomposition hierarchy.

Table 6: Concepts of the Procedural Aspect

In addition the following relation concepts are used:

Concept Specialisation of Source(s)  Target(s) Description

followed by
(preceded
by)

implication
Action; Event; Control
 Action; Event,
Control

It is the implication of the target starting
when the source has finished. Instantaneous
elements are considered to be finished the
moment they start. It is used to provide a
sequence of Actions and other elements in
the order they should be executed.
Additionally the relation should also allow
specifying additional conditions (i.e.
premises of the implication) beside the one
provided by it.

impacts
(affected by) implication Action  Action; Event

It is the implication of performing the source
resulting in an impact on the target. The
impact can be positive (e.g. enables,
supports, notifies etc.) or negative (e.g.
suspends, terminates).

detailed by
(describes)

contains
(inseparable) Action  Process

The decomposition relation for Actions, to
describe them from different points of views
by different Processes (e.g. business process
view, requirements view, orchestration view
etc.). However, all Processes should still
describe the same Action. The targeted
Process can be considered a sub-process of
the Action.

has part
(part of)

contains
(inseparable)

Process  Action;
Event; Control; Process

The decomposition relation from Processes
to all other Procedural elements.

Table 7: Relation concepts of the Procedural Aspect

While the specialised concepts should be preferred, the general concepts should also be available in this
Aspect, most notably:
 specialisation of (generalisation of) – It should be used to describe specialisation of Action types.

For example there can be a global “Any action” type, which is further specialised into “Read” and
“Write” Action types.

 instance of (has instance) – It should be used to indicate the Action types for an Action.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 21

From the descriptions of Table 6 and Table 7 one can see that in the Procedural Aspect:
1. A chain of followed by relations should alternate between Actions and Events. It is recommended to

start with an (Initiation) Event and end with a (Termination) Event, because they indicate the cause
and the result.

2. An Action should only be directly decomposed into Processes. Processes however can be
decomposed into Actions or other Processes to structure them. It is recommended to have an
Action as the root of the decomposition, because Processes only describe Actions from a certain
point of view.

Since every Action should be followed by an Event, which in turn should be followed by another Action, it is
possible to omit one of those types during modelling and assume that something without further
description is there (see Figure 4). This allows process model descriptions similar to the ones found in
D3.1.12 to still fit into the here presented approach.

Figure 4: Possible assumption based on proposed Action/Event alternation for followed by relations

Also, in most cases the AND-inclusion type is used by default. This means that if an element other than a
merging Control would have two incoming followed by relations, both preceding Actions would have to
finish in order to continue. However for processes it is more intuitive to treat such a case with an XOR-
inclusion type as shown in Figure 5.

Figure 5: More intuitive interpretation of multiple incoming followed by relations

The decomposition allows the same Action to be reused in several Processes (see section 2.3.1.3). There is
however a problem with the direct reuse of Actions and Events: certain things only apply in a specific
Process or other certain circumstances, which will here simply be called “context”. Most notably are the

2 Consider “Activities” to be Actions and “Process start” and “Process end” to be Initiation/Termination events.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 22

flowed by relations and the Initiation or Termination event. This means that the context has to be assigned
to the parts to create valid models. A simple example can be seen in Figure 6, where the process context is
assigned in square brackets to the followed by relations.

Figure 6: Global Procedural elements with context assigned to followed by relations

However this is not very intuitive and should be improved upon. The proposed solution here is to use
Representative elements. They represent a certain element like Action or Event (which is stored somewhere
in a pool or repository) with some additional context attached, most notably the process to which they
belong through decomposition and their sequence in the process. The Representative elements are not
meant to be reused and not be part of several Processes. They should be considered Instances, which are
instances of the Template they represent (e.g. specific Action, Event …), since they describe the lowest level
of specialisation that is of modelling interest. An example based on Figure 6 can be seen in Figure 7, where
the dashed elements are Representative elements representing things from the “Reuse pool”. This also
allows reusing the same Action more than once in the same Process. An alternative solution would be to
prevent the reuse of Procedural elements.

Figure 7: Proposed solution for element reuse using Representative elements

2.4.4 Concepts in Collaborative Aspect
The collaborative descriptions heavily depend on the reuse of concepts from the Procedural Aspect and the
Structural Aspects (Motivator/Participant) to provide a collaborative overview. Therefore the concepts
presented in the other Aspects can be used here in addition to the following ones:

Concept Specialisation of Description

Collaboration

Split-Decomposition
set (unspecified
inclusion type);
Template

It depicts the collaboration of Structural elements for one or several
Actions/Processes. It generally focuses on a certain set of Structural
elements, like Liable entities.

Participant
involvement Instance A Participant involvement depicts a certain contribution of a

participant. It is not simply the participant, but also their involvement.

Table 8: Concepts of the Collaborative Aspect

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 23

While the specialised concepts should be preferred, the general concepts should also be available in this
Aspect, most notably:
 contains (contained by) – It should be used to describe decomposition of a Collaboration into the

elements it contains.
 implication (inverse implication) – It should be used to describe the additional things depicted in

the Collaborative Aspect. However, because if it’s very general nature, it should first be specialised
further.

The same problem from the Procedural Aspect for the decomposition and reuse of elements can be found
here as well. However, the same solutions with either using Representative elements or preventing the
reuse also apply. In many cases the Participant involvement can be used as the Representative element.
2.4.5 Inter-Aspect Concepts
In the previous sections the concepts for each Aspect have been described, without any relations between
the Aspects. Such relations are however necessary in order to describe the different elements in an
integrated manner. Therefore some additional Inter-Aspect relation concepts are introduced:

Concept Specialisation of Source(s)  Target(s) Description

influences
(influenced
by)

implication Procedural element 
Motivating value

It implies that a Procedural element leads to
the change of a Motivator value. This
change can be positive or negative (e.g.
create or consume). Additionally it should
also allow stating a quantity for the change.
Through this the costs and duration of an
Action can be denoted.
An example would be “Action X negatively
influences 500 (quantity) € (value)” to
describe that performing an Action costs
500€.

requires
(required by) implication

Procedural element 
Participant template,
Participant instance

It implies the use of a Participant in the
execution of a Procedural element. Typically
this also means that the used Participant
instance is blocked for the time being.
Under circumstances it can still be possible
to perform the Procedural element even
when the Participant is not available (e.g.
when it was only necessary to improve
efficiency).
If the same Participant instance is assigned
to different procedural elements, then it
means that the same reality instance (e.g.
the same human, the same data set) should
be reused throughout one enactment of
those elements. This is not guaranteed
when using Participant templates, as they
represent a variability space and different
reality instances fitting a template could be
involved during the same enactment.
Additionally the requires relation can be
described similarly to the permission rules
(see end of section 2.4.2). Through this
access requirements can be stated on which

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 24

Concept Specialisation of Source(s)  Target(s) Description
the permission rules should be based.

has
responsible
(responsible
for)

requires
Procedural element 
Liable entity template,
Liable entity instance

A specialisation of requires, indicating the
Liable entity that is responsible for a
Procedural element. The approval of the
responsible is required, which can be for
example verbally, in writing or by a general
rule.
A Procedural element should have only one
assigned responsible Liable entity.

has performer
(performs) requires

Procedural element 
Participant template,
Participant instance

A specialisation of requires, indicating the
participant that actually performs a
Procedural element, typically a Liable entity.
If only one Liable entity performer is
assigned to an element, and no responsible,
then it will be assumed that the performer
is responsible. If more than one performer
is assigned then it is considered
collaboration. If the assigned performers
are from different organisations, then it is
an inter-organisation collaboration. The
exact flow of collaboration can be further
detailed through a Process.
For covering access control: for each
Participant template assigned that is not a
performer or responsible, there should be
at least one performer that has the right to
access it.

is for
(has
collaboration)

implication Collaboration  Action

It implies that the Collaboration can be
derived from the Actions it is linked to. This
also means that the Collaboration is based
upon those.

involved
participant
(involved in)

implication
Participant involvement
 Participant template,
Participant instance

It implies the use of a Participant. It denotes
which Participant is involved in a Participant
involvement. In one Collaboration only a
limited set of possible Participant template
subtypes should be used (e.g. Role, Liable
entity or Interaction component and Point
of interaction).

Table 9: Relation concepts between the different Aspects

2.5 Scope-specific Modelling Method Concepts
The Scope-specific concepts represent the last level of concept specialisation and it is closest to the
granularity used in D3.1.1. They are specialisations of the Aspect-specific concepts. While it is necessary to
have special relations to link models from the different Aspects, the already available relations can be used
to bridge model parts from different Scopes (e.g. through decomposition).

The here presented descriptions follow a more structured approach where each concept is described by its
own table containing a description, the concepts it specialises, the considered sub-types as well as
properties that should be available (omitting properties described in section 2.3.2). The considered sub-

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 25

types indicate what additional categorisations for the concepts should be available. The concepts are later
on (see section 2.6) grouped, which can be instantiated into useful descriptions. Again the hierarchy
created by the general and Aspect-specific concepts does apply (e.g. properties have to be also available in
the specialised versions) and references to the names will be written in italic.

Again, while the specialised concepts should be preferred, the more general concepts (Aspect-independent
and –specific) should also be available in every Aspect and Scope. For example the general decomposition
relation contains should be used to decompose Business entities into Organisation units and further
decomposed into Performers.

2.5.1 Specialised Concepts in Structural Aspect

2.5.1.1 Concepts mostly focused in Motivator Aspect

Value
Specialisation of:
• Motivating value (AND-
inclusion type)

The Value is a general concept that is used to describe products and services
which are provided or consumed by an enterprise, as well as more general
or abstract values like money, time, warranty or eco-friendliness. It should
always represent one object (e.g. “Shirt”, not “10 Shirts”).
It can be decomposed into other Values to describe what it is made up of
and customisability can be captured through the use of Value sets. Generally
the price and cost of a Value should be described in models of the
Procedural Aspect. However, both can be captured to a certain degree
through decomposition. The cost of a Value can be captured through the
prices of the values it is decomposed into, while the price would be the cost
plus the directly assigned money.

Subtypes
 Value type The general type of the Value. Among the envisioned types are “Material”,

“Component”, “Service” and “Abstract”, although others are possible as
well. It should be only one of those types.

 Excitement type The excitement type is a simplification of the Customisation feature
classification from D3.1.1. Two types are considered: “Basic” and
“Competitive”. “Basic” values are considered inherent by the value provider,
while “Competitive” values are the parts on which the provider focuses its
competing strategies.

 Axiological type It can be “Value” (desirable) or “Anti-Value” (non-desirable, or “waste” in
the sense of the Lean paradigm (Bicheno, 2009)). While it is better to have
more of a Value, the opposite is true for “Anti-Values” (i.e. preferred to have
less). Examples would be “Health” and “Illness” or “Delivery speed” and
“Time to delivery”. In some cases it is more intuitive to use Anti-Values to
describe things (e.g. Time to delivery, Execution cost). It is recommended to
choose only one approach and use it through all descriptions in a company,
e.g. either use “Money” and negatively influence it or use “Execution costs”
and positively influence it.

Value set
Specialisation of:
• Description function
• Split-Decomposition set

The Value set is used to describe possible options or customisability in the
structure of a Value. Using them a general structure for a product can be
created, for which special configuration can be provided by using the
configuration of and implies or prohibits relations.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 26

Subtypes
 Inclusion type Based on the three available inclusion types, the subtypes can be “of all”

(AND), “of some” (OR) or “of one” (XOR). It should be only one of those
types.

has value (value of)
Specialisation of:
• contains

This relation concept should be used to describe the decomposition of
Values and Value sets.

Allowed source concepts:
• Value
• Value set

Allowed target concepts:
• Value
• Value set

Subtypes
 Separable type Special type indicating if the target element can be separated from source

element. The possible types are therefore “inseparable” and “separable”.
Properties
 Quantity The quantity of the target that is contained in the source.

mandates value (mandated by value)
Specialisation of:
• mandates

This relation indicates what target Values or Value sets have to be also
available/used (implied) or absent/not-used (prohibited), when the source
Value is available/used. For example this relation can be used to describe
the use or prohibition of certain colours of a shirt when it is also to be
embroidered.

Allowed source concepts:
• Value

Allowed target concepts:
• Value
• Value set

Subtypes
 Implication type Indicates if the target is implied (“implies”) or if the negation is implied

(“prohibits”).

configuration of (configured into)
Specialisation of:
• specialised value of

This special relation concept should be used to describe specialisation of
Values. A Value should be the specialisation of only one other Value (i.e. no
multiple inheritances).

Allowed source concepts:
• Value

Allowed target concepts:
• Value

annihilates (annihilates)
Specialisation of:

A special symmetric relation associating a normal Value to its Anti-Value and
vice versa. Allows creating bridges between the two if necessary for
computations.

Allowed source concepts:
• Value

Allowed target concepts:
• Value

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 27

Constant
Specialisation of:
• Motivating value

A Constant represents a specific numerical or boolean value, like 2, 5, 14,
{23, 42}, {1, 2, 3, 4, 5}, “true” (1) or “false” (0). Those are used to describe
functions or calculations as well as the target that performance indicators
should achieve.

Subtypes
 Value type The values can be separated in “Numeric” or “Boolean”. However, even

boolean values can be represented as numbers (1 or 0) and vice versa (not 0
or 0).

 Set type Two set types are considered for numerical values: “Single”, representing
just one value and “(ordered) Set”, representing several values in a specific
order.

Properties
 Value The value it represents.

Variable
Specialisation of:
• Motivating value
• Description function

A Variable represents a value that has to be determined first, usually
through calculation or retrieval. This can be achieved through the execution
of a function.

Subtypes
 Value type The values can be separated in “Numeric” or “Boolean”. However, even

boolean values can be represented as numbers (1 or 0) and vice versa (not 0
or 0).

 Set type Two value types are considered for numerical values: “Single”, representing
just one value and “(ordered) Set”, representing several values in a specific
order.

 Variable type In this context Variables can be “Named”, in which case it should be possible
to reuse them, or “Unnamed/Anonymous”.

Properties
 Function The function that is executed in order to determine the value of the Variable

(e.g. addition, subtraction, standard deviation, load values from table etc.).
Some recommended functions that should be available can be found in
section 2.6.6.

KPI
Specialisation of:
• Variable (Named)

The KPI, which is short for Key Performance Indicator, is a measure used to
evaluate performance and has a desired target value that should be
achieved.

Level
Specialisation of:
• Motivating value

The Level is something that can be achieved by a KPI, if a desired target value
is reached. Typically they are colour coded (e.g. green, blue, yellow, orange,
red)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 28

has operand (operand for)
Specialisation of:
• contains

Through this relation, the operands or parameters for the functions used by
Variables and KPIs are specified. Using this approach and the laws of
mathematics it is possible to calculate the values.

Allowed source concepts:
• Variable

Allowed target concepts:
• Variable
• Constant

Properties
 Order number The order number should be used to indicate the sequence of operands for

functions where it is necessary, for example for subtraction or division.
Therefore, before calculating a value the operands should first be arranged
based on this property in ascending order and passed to the function in the
resulting sequence.

covers also (covered by)
Specialisation of:
• specialised value of

This specialisation type is used to describe precedence between the
available Levels. It indicates that the target value of this relations source
Level is more restrictive than the one of the relations target Level.

Allowed source concepts:
• Level

Allowed target concepts:
• Level

achieves (achieved by)
Specialisation of:
• mandates

This relation denotes the implication that the KPI can achieve the targeted
Level. The premise for when and how exactly this Level is achieved is covered
by the condition for relation.

Allowed source concepts:
• KPI

Allowed target concepts:
• Level

condition for (under condition)
Specialisation of:
• mandates

This relation represents the premise for a KPI achieving a certain Level. It
means that when the condition (the source) is met, that also the conclusion
(the targeted implication) should be carried out.

Allowed source concepts:
• Variable (Single, Boolean)

Allowed target concepts:
• achieves

Table 10: Scope-specific concepts and relation concepts of the Motivator Aspect

2.5.1.2 Concepts mostly focused in Participant Aspect

Location
Specialisation of:
• Capability
• Asset

A Location represents a place that can be visited. It is generally described by
an area of unspecified size and can be as big as the universe or as small as a
dot.

Subtypes
 Type Two general types are considered: “Physical”, denoting physical locations

(e.g. country, city etc.) in which case the Location is considered to be a
template of all possible locations there. The other type is “Digital”, which
represents a location in the digital world and is often represented by a URL.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 29

However, a digital location can also represent locations not denoted by a
URL, like the internal database of a phone.

 Dependency type It indicates if the Location is dependent on a point of reference, meaning
that a location can be “Absolute” (e.g. Vienna) or “Relative” (e.g. next to
machine). For a relative location the point of reference should be provided
as well.

Properties
 Area The area that is represented by a Location. For absolute physical locations it

can be for example “Austria”, “Vienna, Austria”, a specific address or latitude
and longitude. It this case it is recommended to use a generally understood
format (e.g. Google Maps). For digital locations it is recommended to use
something that a browser can understand. For relative locations some hint
on the point of reference should be provided, for example through natural
language.

Market segment
Specialisation of:
• Participant template
• Liable entity

A Market segment represents a part of the market, which is classified by one
or several characteristics, to identify groups. Usually, Market segments are
used to depict groups of customers.

Subtypes
 Market interest The Market segments can further be typed through the interest in them,

resulting in “Targeted” or “Not targeted” segments.
Properties
 Share The share a company holds in the Market segment.

Characteristic
Specialisation of:
• Capability
• Liable entity

A Characteristic represents an attribute by which a Market segment is
described and if applicable it also represents a value for that attribute.
Examples for Characteristics would be certain age ranges, traits or attitudes
like “Sustainability”

justifies (justified by)
Specialisation of:
• implication

This is a special relation between different facets of an Aspect. It is the
implication that a value must be available to satisfy a certain characteristic
of a segment. Therefore, it can be used to describe the necessity of certain
Motivating values based on the Characteristics of a Market segment.

Allowed source concepts:
• Characteristic

Allowed target concepts:
• Motivating value

Business entity
Specialisation of:
• Participant instance
• Liable entity

A Business entity represents an entity that is conducting relevant business. It
can be the own company, another company, a part of a company or a
specific customer.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 30

Business role
Specialisation of:
• Participant template
• Liable entity

A Business role represents a template for Business entities. For example
“material supplier”, “customer” or “competitor” would be Business roles.

Business capability
Specialisation of:
• Capability
• Liable entity

A Business capability represents the ability of a business to provide some
value for some compensation.

Business entity access
Specialisation of:
• Access means
• Liable entity

A Business entity access denotes how a Business entity can be accessed. It
represents its location and how it can be contacted.

Properties
 Contact information Some information about how to contact a Business entity.

Organisation unit
Specialisation of:
• Participant instance
• Liable entity

An Organisation unit represents a part of an organisation or Business entity.
It allows describing a structure through decomposition.

Subtypes
 Unit type There are different types of Organisation units possible, like “Division”,

“Department” or “Team”.
Properties
 Preferred occupation Through this a preferred number of positions in an Organisation unit can be

specified.
 Function The general function an Organisation unit performs.

Performer
Specialisation of:
• Participant instance
• Liable entity

A Performer represents a human that works in a company and performs
some form of task or job there. The Performer occupies a position at the
company. Often they are described through their Skills and Knowledge.

Properties
 Availability The availability of a Performer.

Role
Specialisation of:
• Participant template
• Liable entity

A Role represents a template for Performers. Examples for Roles are
“Expert”, “CEO”, “Programmer” or “Administrative personnel”. Can be
described through both specialisation and through Skills and Knowledge.

Properties
 Preferred occupation Through this a preferred number of Performers for a Role can be specified.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 31

Skill
Specialisation of:
• Capability
• Liable entity

A Skill represents capabilities that a person can be proficient in. It is driven
by performing a task. The level of skill proficiency is attached to the relation
between the Skill and the participant.

Knowledge
Specialisation of:
• Capability
• Liable entity

A Knowledge represents knowledge that a person can have. It is driven by
having some information. The level of knowledge is attached to the relation
between the Knowledge and the participant.

has chief (chief of)
Specialisation of:
• contains (inseparable)

The has chief relation indicates the person that is the chief of a Business
entity. It also indicates that the person has some overall responsibility for all
tasks performed by their employees.

Allowed source concepts:
• Business entity

Allowed target concepts:
• Performer

provided value (can be provided by)
Specialisation of:
• has capability

This relation denotes what value is provided by a Business capability. This
should also be used to denote the time to delivery. For this there needs to
be a “Time to delivery” Anti-Value, where the quantity denotes the
duration.3

Allowed source concepts:
• Business capability

Allowed target concepts:
• Motivating value

Properties
 Quantity The amount of the value that can be provided at once.

necessary compensation (compensation for)
Specialisation of:
• has capability

This relation denotes what values should be given as compensation in return
for providing a value.

Allowed source concepts:
• Business capability

Allowed target concepts:
• Motivating value

Properties
 Quantity The amount of the value used for compensation.

provided at (can find business capability)
Specialisation of:
• has capability

This relation denotes where the value denoted by a Business capability can
be provided geographically.

Allowed source concepts:
• Business capability

Allowed target concepts:
• Location

3 Actually the Value provided is “Delivery speed” (which is X divided by time). However, in many cases the human just
thinks of the delivery time. Therefore the possibility of describing and using the Anti-Value “Time to delivery” is
provided.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 32

access business through (accesses business)
Specialisation of:
• has capability

This relation denotes what access means should be used to contact a
Business entity.

Allowed source concepts:
• Business entity

Allowed target concepts:
• Business entity access

has business location (business location of)
Specialisation of:
• contains (inseparable)

This relation is used to assign a Location to a Business entity access, and
therefore also denoting the location of a Business entity.

Allowed source concepts:
• Business entity access

Allowed target concepts:
• Location

has manager (manager of)
Specialisation of:
• contains (inseparable)

The has manager relation indicates the person that is the manager of an
Organisation unit. It also indicates that the person has some overall
responsibility for all tasks performed by their employees.

Allowed source concepts:
• Organisation unit

Allowed target concepts:
• Performer

fulfils skill/knowledge (skill/knowledge fulfilled by)
Specialisation of:
• fulfils

This relation is used to denote some skill proficiency or knowledge about a
domain for elements of type Instance (e.g. Performer). It also indicates the
level of aptitude they have.

Allowed source concepts:
• Participant instance

Allowed target concepts:
• Skill
• Knowledge

Properties
 Level of aptitude In addition the relation should also convey to what level a Skill or Knowledge

is covered by the Instance. The recommended types in ascending order of
aptitude are “Novice”, “Advanced”, “Competent”, “Proficient” and “Expert”.
“None” should generally be denoted by not using this relation. In terms of
numbers it can be represented from 0 (None) to 5 (Expert).

has skill/knowledge (skill/knowledge of)
Specialisation of:
• has capability

This relation is used to denote some skill proficiency or knowledge about a
domain for elements of type Template (e.g. Role). It also indicates the level
of aptitude they have.

Allowed source concepts:
• Participant template

Allowed target concepts:
• Skill
• Knowledge

Properties
 Level of aptitude In addition the relation should also convey to what level a Skill or Knowledge

is covered by the Instance. The recommended types in ascending order of
aptitude are “Novice”, “Advanced”, “Competent”, “Proficient” and “Expert”.
“None” should generally be denoted by not using this relation. In terms of
numbers it can be represented from 0 (None) to 5 (Expert).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 33

Mobile app
Specialisation of:
• Participant instance
• Asset

A Mobile app represents an application that can be run on a mobile device.
In this case the Mobile app should be used to depict the abstract
understanding of an application (e.g. OpenOffice Writer), not a certain
license, deployment/installation or setup of that application (not e.g. this
installation of OpenOffice Writer on this computer).

Properties
 Download link If available a link to where an app can be downloaded should be provided.

Mobile app template
Specialisation of:
• Participant template
• Asset

A Mobile app template represents a template for Mobile apps. Examples for
such templates are “Communication apps”, “VoIP apps” and “Data
visualisation apps”.

Mobile app capability
Specialisation of:
• Capability
• Asset

A Mobile app capability represents a capability that can be provided by a
Mobile app or Mobile app template. Examples for such capabilities are
“Audio communication”, “Scan barcodes” and “Take pictures”.

Point of interaction
Specialisation of:
• Capability
• Asset

A Point of interaction represents a simple interaction part of an app or a
template between the user and the mobile device. A Point of interaction is
considered independent of a specific modality. This means that here the
Point of interaction for entering some text either through a keyboard or
through a microphone is considered the same.

Subtypes
 Interaction type The interaction is considered directed. This means that it can happen from

device to user, indicated by a “Readable” Point of interaction, from the user
to the device, indicated by an “Interactive” Point of interaction, or both,
meaning that an element is used to both interact with the user and receive
information from them (e.g. a text field where the user can change his
address which also shows their currently known address). The “Readable”
interactions should only be used when information is provided to the user
(e.g. a sensor value, the name of a product etc.), not for simple reference
points (e.g. labels, empty text areas etc.).

 Awareness type A Point of interaction can either be presented to the user (e.g. a separate
button) or be generally hidden to him (e.g. as part of another Point of
interaction) and the user knows about them from an outside source (e.g.
manual) or through expectations. Therefore they are categorised in
“Presentable” and “Non-presentable” Points of interaction. When
considering for example visual modality, then “Presentable” Points of
interaction occupy screen space, while “Non-presentable” do not.

Properties
 Data type The data type should be used to describe what type of data is used for the

interaction between user and device. It refers to the type of content rather
than the channel of acquiring the content. For a list of recommended values
for this property see section 2.5.1.3.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 34

Interaction component
Specialisation of:
• Capability
• Asset

An Interaction component represents a complex interaction part of an app or
a template. It can be simply understood as an aggregation of other
interaction parts. Therefore it can be further described through
decomposition into other Interaction components or Points of interaction.
An Interaction component is considered independent of a specific modality.
Interaction components can also be used to represent the patterns from
D5.2.2, especially when making use of the global identifier (see section
2.3.2). Additionally, more special versions of those patterns can be described
through Interaction components by using specialisation.

Subtypes
 Awareness type The boundary of an Interaction component can either be presented to the

user or be generally hidden to him, meaning that a user can be made aware
of the aggregation of its contents or just know about the contents, which
again depend on the awareness type of the contained elements. Therefore
Interaction components are categorised in “Presentable” and “Non-
presentable”.

 Content multiplication
type

In some cases the content structure of a Interaction component should
repeat itself based on runtime data and cannot be fixed during modelling,
for example in the case of lists that should hold sensors of different
machines or tables that have no fixed amount of rows. Therefore Interaction
components are considered either “Repeatable” or “Non-repeatable”.

Properties
 Intended for device This property should be used to specify for what devices an Interaction

component is intended for.

Information instance
Specialisation of:
• Participant instance
• Asset

An Information instance represents a certain information, that can be
general (e.g. “Order”) or very specific (e.g. “Contract 53132”). Using the
same Information instance element in several Actions means that during
executions of those Actions the same piece of information should be used. If
it is not necessary to describe such behaviours then Information templates
should be used instead.

Information template
Specialisation of:
• Participant template
• Asset

An Information template represents a template for some information.
Information is considered in a general sense, so an example for a template
would be “Orders”, “Standard contract” or “Machine manual”, no matter if it
is available as a tangible document, as a digital text file or through RDF.

Subtypes
 Information type The type of information can be one of: “First hand information”, “Refined

information” or “Aggregated information”. “First hand information” depicts
information that is raw and mostly unprocessed, while “Refined
information” is information that has been processed and enriched.
“Aggregated information” indicates that it is information assembled from
different sources and it is assumed to also be “Refined” (i.e. process of
aggregation is considered a refinement).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 35

 Access modifier type Categorisation according to a general type for access restriction. The three
possible types are: “Public”, “Restricted” and “Private”. While “Public”
information is generally available to everyone, “Restricted” information
should be restricted to the user and a close circle around them, while
“Private” information should only be available to the people using it. It is not
a replacement for the proper description of access control for the
information.

Entity
Specialisation of:
• Capability
• Asset

An Entity represents a capability of information and should be understood
similarly to entities from an ER-Model. It can be decomposed into Attributes
and “separable” and “inseparable” should be used to indicate which
attributes have to be part of an entity and which are optional. However, the
set of “inseparable” Attributes is not necessarily the identifier or primary key
of the Entity, but it should be part of it.

Relation
Specialisation of:
• Capability
• Asset

A Relation represents a capability of information and should be understood
similarly to relations from an ER-Model.

Attribute
Specialisation of:
• Capability
• Asset

An Attribute represents a capability of information and should be
understood similarly to attributes from an ER-Model.

Properties
 Data type The type of data an attribute accepts. Unlike the data type of a Point of

interaction, this type should be closer to the programming and
implementation domain.

Information access
Specialisation of:
• Access means
• Asset

An Information access describes how some information can be accessed.

Subtypes
 Medium type The medium type indicates how the information is available. Examples are

“Paper-based” or “Paperless” as well as “Linked Data”.
 Data source type This type indicates the source for accessing the information. It can be

“Server”, “Cache”, “Local” or “Peripheral”.
Properties
 Performed operations Information can be accessed in order to read it or to alter it. This property

allows denoting what operations can be performed through this Information
access. It is recommended to use one or several of: “Create”, “Read”,
“Update” and “Delete”.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 36

Location control
Specialisation of:
• Split-Implication set

A Location control is used to describe possible options for accessing
information from different Locations. Using them it is possible to provide
alternative sources for retrieving some information, or to describe federated
queries.

Subtypes
 Inclusion type Based on the available inclusion types, the subtypes can be “all of” (AND), or

“one of” (XOR). It should be only one of those types.

relates (related by)
Specialisation of:
• contains (inseparable)

This relation is used to indicate which Entities are parts of a Relation.

Allowed source concepts:
• Relation

Allowed target concepts:
• Entity

Properties
 Role Through this property a role for the linked Entity can be provided, giving

some context for it in the Relation.
 Cardinality The cardinality for the linked Entity in this relation. Typical values are “1”,

“0…1”, “1…*” and “0…*”.

accessed through (access for)
Specialisation of:
• has capability

The accessed through relation should be used to indicate how information
can be accessed. It means that all of those access possibilities are available
for the information, however usually only one of those is necessary for a
certain purpose.

Allowed source concepts:
• Information template

Allowed target concepts:
• Information access

execute on (endpoint for)
Specialisation of:
• implication

This relation links an Information access to the Locations where it can be
performed, in which case the target can be considered an endpoint. It is the
implication that accessing information requires accessing the location. More
detailed descriptions of federated queries or alternative endpoints can be
described by using Location control.

Allowed source concepts:
• Information access
• Location control

Allowed target concepts:
• Location control
• Location

Properties
 Query This is an optional property that can be used to detail how the information is

accessed. It can be for example normal text for a human (for “Paper-based”
access) or a SPARQL query (for “Linked Data” access).

Permission rule
Specialisation of:
• Participant template
• Asset

The Permission rule represents a single rule which allows performing a
subject some action on a resource. Because its decomposition is of the AND-
inclusion type, it means that the relations of the same type (i.e. for subject,

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 37

for action type and for resource) should build an intersection for the
Permission rule. For example if one Permission rule links to two subjects,
then only participants that belong to both of those subjects have permission
to perform an action on the intersection of the resource types.

for subject (permitted subject of)
Specialisation of:
• contains (inseparable)

Denotes what subjects should gain permission by the rule. If more than one
subject is linked to the same rule, then only participants of the intersection
created by those links should have access. A description can be used to
further depict restrictions on the subject.

Allowed source concepts:
• Permission rule

Allowed target concepts:
• Participant template
• Participant instance

for action type (permitted action type of)
Specialisation of:
• contains (inseparable)

Denotes what types of actions that can be performed because of the rule. If
more than one type of action is linked to the same rule, then only actions
with a type created by the intersection of those links should be possible. A
description can be used to further depict restrictions on the action.

Allowed source concepts:
• Permission rule

Allowed target concepts:
• Action type

for resource (permitted resource of)
Specialisation of:
• contains (inseparable)

Denotes what resources or types of resources can be acted upon because of
the rule. If more than one is linked to the same rule, then only resources
with a type created by the intersection of those links should be possible. A
description can be used to further depict restrictions on the resource.

Allowed source concepts:
• Permission rule

Allowed target concepts:
• Asset

basis for (based on)
Specialisation of:
• implication

The implication of needing a Permission rule based on a given requirement
from a Procedural element, denoted through requires relations.

Allowed source concepts:
• requires

Allowed target concepts:
• Permission rule

implemented by (implements)
Specialisation of:
• implication

The implication that a Permission rule is covered to some degree by an
Access means.

Allowed source concepts:
• Permission rule

Allowed target concepts:
• Access means

Table 11: Scope-specific concepts and relation concepts of the Participant Aspect

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 38

2.5.1.3 Recommended data types for Points of interactions
As previously described, a data type should be specified for a Point of interaction. This section covers a
hierarchy of data types that are recommended. They are structured in a hierarchy, in order to prevent
enforcing a specific granularity and to give some freedom to the modeller. Still the modeller should choose
the most specific type that they deem fit. The hierarchy is:

 Data
o Value

 Text
• Location
• Email
• Date and time
• Phone
• URI

 Number
• Integer
• Decimal
• Percentage
• Currency

 Boolean
o Object

 File
 Image
 Video
 Sound
 Document

 Event

2.5.2 Specialised Concepts in Behavioural Aspect

2.5.2.1 Concepts mostly focused in Procedural Aspect

Value exchange flow
Specialisation of:
• Process

A Value exchange flow represents a process, focusing on the exchange of
Values.

Value exchange
Specialisation of:
• Action

A Value exchange represents an Action which focuses on the exchange of
Values between two partners. While the exchange of a single Value is always
considered between two partners, a single Value exchange can describe
more than one such exchange, but never less. It should be described from
the point of view of the initiator and only exchanges in which the initiator
participates should be part of it.
The Values that are exchanged are indicated by the influences relation, and
the direction of exchange for that Value is indicated by the sign of the
quantity according to the initiator.
It is of Action type “Value exchange”.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 39

Start stimulus
Specialisation of:
• Initiation event

A Start stimulus indicates the point of origin which leads to a series of Value
exchanges.

Properties
 Occurrences The estimated amount of occurrences for the stimulus in a certain time

frame. Usually the time frame of one year should be used.

End stimulus
Specialisation of:
• Termination event

An End stimulus indicates the end of a series of Value exchanges.

Exchange control
Specialisation of:
• Control

An Exchange control is used to control the flow of Value exchanges.

Subtypes
 Inclusion type Based on the available inclusion types, the subtypes can be one of “all”

(AND) or “one” (XOR), as well as one of “Split” or “Merge”.

with partner (partner of)
Specialisation of:
• requires

This relation indicates the partners participating in a Value exchange. Value
exchanges should be described on such a level that only two partners are
participating and one of them should be the initiator.

Allowed source concepts:
• Value exchange

Allowed target concepts:
• Liable entity

has initiator (initiator of)
Specialisation of:
• with partner
• has responsible

This relation indicates the initiator for a Value exchange, which also
participates in the exchange itself. It also states from which point of view the
influences relations are being described for the Value exchange.

Allowed source concepts:
• Value exchange

Allowed target concepts:
• Liable entity

Business process
Specialisation of:
• Process

A Business process represents a more detailed description of an Action that
describes procedurally how a certain goal should be achieved. It should
concentrate on what the human has to do and avoid technical details about
the execution (e.g. visualise data).

Activity
Specialisation of:
• Action

An Activity describes a general Action that is performed by somebody to
achieve a certain goal. The waste that is produced by an Activity can be
described by positively influencing Anti-Values. For example an Activity can
that has a 3% waste through defects would link to a “Defects” Anti-value
using the influences relation with a quantity of 0.03.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 40

Properties
 Instructions This property should describe or link to some instructions on how to carry

out the Activity.
 Auditing requirements This property describes the requirements and what is necessary to prove the

proper execution of the Activity. In addition an Evaluation process that
evaluates this Activity can be used to describe additional details.

Start
Specialisation of:
• Initiation event

A special type of the Initiation event that is used in processes which have
general actions.

Subtypes
 Intention type The Start of a process can be intended (something that is expected and

generally welcomed, like receiving an order) or it can be as a reaction to
something (something that can happen and has to be taken care of, like
cancelling an order). Therefore the possible types are “Intended” and
“Incident”.

End
Specialisation of:
• Termination event

A special type of the Termination event that is used in processes which have
general actions.

Subtypes
 Intention type The End in a process can be as desired (main) or it can be an alternative end.

When the execution of a process finishes only in alternative ends, then the
results can be considered less satisfactory. The two corresponding types are
“Main” or “Alternative”.

Decision
Specialisation of:
• Action
• Split-Control

A Decision represents the action of deciding something in a process and by
that influencing how the following sequence should continue.

Subtypes
 Inclusion type Based on the available inclusion types, the subtypes can be “for some of”

(OR) or “for one of” (XOR). It should be only one of those types.
Properties
 Question The question that emphasises the decision that should be made.

Parallelism
Specialisation of:
• Split-Control (AND-
inclusion type)

A Parallelism indicates that the outgoing paths in a process can be executed
simultaneously instead of requiring a specific sequence.

Synchronisation
Specialisation of:
• Merge-Control

A Synchronisation indicates the merging of several paths back into one. Its
inclusion type indicates when the elements following the Synchronisation
should be started (i.e. if one, if some or if all of the incoming paths are

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 41

finished). The Synchronisation itself does not terminate any remaining
Actions of the incoming paths4.

Subtypes
 Inclusion type Based on the three available inclusion types, the subtypes can be “of all”

(AND), “of some” (OR) or “of one” (XOR). It should be only one of those
types.

Requirements process
Specialisation of:
• Process

A Requirements process represents a more detailed description of an Action
that focuses on depicting the things that are required by it and how they are
used. It can therefore look closer like a workflow than a Business process,
and is often created by splitting and merging Actions from a Business
process.

strictly requires (strictly required by)
Specialisation of:
• requires

This specialisation of requires indicates that the target is necessary to
perform something. It is recommended to use this level of detail in the
Requirements process.

Allowed source concepts:
• Elements contained by a Requirements process

Allowed target concepts:
• Participant template

supported by (supports)
Specialisation of:
• requires

This specialisation of requires indicates that the target supports performing
something, meaning it is good to have it, but even if it is missing you can
perform the action. It is recommended to use this level of detail in the
Requirements process.

Allowed source concepts:
• Elements contained by a Requirements process

Allowed target concepts:
• Participant template

Interaction flow
Specialisation of:
• Process

An Interaction flow represents a more detailed description of an Action that
centres on depicting the interactions between a device and its user as well
as what functions a device is executing. Mostly mobile devices and the
interaction with their mobile applications are in the focus.

Interaction
Specialisation of:
• Action

An Interaction represents an Action that is performed by a single user on a
device. They should link to a Point of interaction or an Interaction
component, to indicate through which parts the interaction is happening.
If an Interaction is followed by a Function execution, then it means that
interacting with the linked Point of interaction or Interaction component
should trigger something.

4 This is important for the “OR” and “XOR” type, since then some Actions of the incoming paths might still be
executing while the Synchronisation is passed.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 42

Function execution
Specialisation of:
• Action

A Function execution represents an Action performed by the device. It
makes therefore little sense to link a human performer to it. It is however
possible to link a responsible person.

Subtypes
 Source type The source type indicates where the function is executed. Examples are “in

App”, “in Device”, “in Environment” and “Remote”. It is also possible to have
functions that are executed in several sources.

Path split
Specialisation of:
• Control

A Path split indicates a splitting of the possible paths into one, several or all
outgoing paths. The necessary preparations and finding a decision should
happen beforehand, in the case that not all outgoing paths should be chosen
(i.e. a Path split is not the action of deciding).

Subtypes
 Inclusion type Based on the three available inclusion types, the subtypes can be “to all”

(AND), “to some” (OR) or “to one” (XOR). It should be only one of those
types.

Orchestration
Specialisation of:
• Process

An Orchestration represents a more detailed description of an Action that
centres on describing a technical workflow. It focuses on specifying a
sequence in which mobile apps should be executed.

App execution
Specialisation of:
• Action

An App execution represents an Action that depicts the execution of a
mobile app or an Orchestration on a mobile device. During the execution of
the app there is usually interaction between the user and the device. This
interaction can be further described for example by an Interaction flow.

Notification received
Specialisation of:
• Event

A Notification received represents the event that is triggered when receiving
a notification on a device.

Entry
Specialisation of:
• Initiation event

An Entry indicates a point where an Orchestration can be started from.

Subtypes
 Start type The impulse for starting an Orchestration can be either the receiving of a

notification or it can be from a human deciding to start it. So it can be
“Delegated” (when receiving a notification), “Autonomous” (by a humans
will) or both.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 43

Halt
Specialisation of:
• Termination event

A Halt represents the end of a thread of path in an Orchestration.

executes (executed in)
Specialisation of:
• requires

A specialisation of requires that indicates what app should be executed by an
App execution.

Allowed source concepts:
• App execution

Allowed target concepts:
• Mobile app
• Mobile app template
• Mobile app feature

notifies (notified by)
Specialisation of:
• impacts (positive)

A specialisation of impacts that indicates which other Orchestrations should
receive a notification in order to continue.

Allowed source concepts:
• App execution

Allowed target concepts:
• Notification received
• Entry

has message (message of)
Specialisation of:
• implication

This relation indicates what information is provided in a notification. Note
that this does not necessarily mean that all of the data is sent. It is also
possible that only a key is sent which can be used to retrieve the
information. It is the implication of sending the attached message when a
notification happens.

Allowed source concepts:
• notifies

Allowed target concepts:
• Information template
• Information instance

designed for (has orchestration)
Specialisation of:
• has performer

This relation indicates for which Liable entities an Orchestration has been
designed. In other words, it states who should use a specific orchestration.

Allowed source concepts:
• Orchestration

Allowed target concepts:
• Liable entity template

Evaluation process
Specialisation of:
• Process

An Evaluation process represents a more detailed description of an Action
that centres on describing the evaluation of some Action or Motivating
value. It focuses on depicting how evaluation is handled and who
participates in it.

Evaluation action
Specialisation of:
• Action

An Evaluation action represents an Action that is carried out for the sake of
assessing a value or action.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 44

Subtypes
 Action type Different types of actions can be considered here, focusing on how the data

is handled. Examples are “Data collection”, “Data transmission” and “Data
processing”. However, it is recommended to use the Action type from the
Aspect-specific concepts to denote those.

evaluates (evaluated by)
Specialisation of:

This relation indicates what is evaluated by an Evaluation action.

Allowed source concepts:
• Evaluation action

Allowed target concepts:
• Action
• Motivating value

performed on (in performance of)
Specialisation of:

This relation indicates on what data or information an Evaluation action is
performed on. Using the previously mentioned action types (see Evaluation
action) it indicates “what data is collected”, “what data is transmitted” or
“what data is processed”.

Allowed source concepts:
• Evaluation action

Allowed target concepts:
• Variable
• KPI
• Information template
• Information instance

Table 12: Scope-specific concepts and relation concepts of the Procedural Aspect

2.5.2.2 Concepts mostly focused in Collaborative Aspect

Business model
Specialisation of:
• Collaboration

A Business model represents a scenario in which business partners perform
transactions or Value exchanges, which depend on one another.

Value interface
Specialisation of:
• Participant involvement

A Value interface represents a part of a liable entities boundary, through
which values are exchanged. It can be considered a part of a Liable entity.

Dependency control
Specialisation of:
• Control

A Dependency control allows splitting and merging dependency paths.
Together with the fractions of depends on relations it allows to control the
occurrences based on its inclusion type. Details can be found in Table 20.

Subtypes
 Inclusion type Based on the available inclusion types, the subtypes can be one of “all”

(AND) or “one” (XOR), as well as one of “Split” or “Merge”.
With an “AND” inclusion a fraction of one side (i.e. either the outgoing or the
incoming relations) is related to the fractions of the other side. With an
“XOR” inclusion a fraction of one side is related to the sum of fractions of
that side.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 45

interface part of (has value interface)
Specialisation of:
• involved participant

A specialisation of involved participant, which indicates whose Value
interface it is. The Value interface can be also considered to be part of the
target Liable entity.

Allowed source concepts:
• Value interface

Allowed target concepts:
• Liable entity

exchanges value with (receives value from)
Specialisation of:
• implication

This relation indicates between which two Value interfaces a Value is
exchanged. It is the implication that using the Value interface of the initiator
(the source) also implies using the Value interface of the linked partner.

Allowed source concepts:
• Value interface

Allowed target concepts:
• Value interface

Properties
 Outgoing valuation A number representing the worth of the exchanged value from the point of

view of the partner giving up the value. It should be the same as the
Incoming valuation, if the value “Money” is exchanged.

 Incoming valuation A number representing the worth of the exchanged value from the point of
view of the partner receiving the value. It should be the same as the
Outgoing valuation, if the value “Money” is exchanged.

exchanged value (exchanged in)
Specialisation of:
• implication

This relation indicates what Value is exchanged. It is the implication that
exchanging a value also requires that value.

Allowed source concepts:
• exchanges value with

Allowed target concepts:
• Value

Properties
 Quantity The quantity of the Value that is exchanged.

depends on (dependency of)
Specialisation of:
• implication

This relation indicates dependency between the elements in a Business
model. It is the implication that using the source also requires using the
target.

Allowed source concepts:
• Start stimulus
• Value interface
• Dependency control

Allowed target concepts:
• End stimulus
• Value interface
• Dependency control

Properties
 Fraction The fraction indicates a rate for change in occurrences when using

Dependency control. It should be seen in relation to the other depends on
relations of the linked Dependency control. Details can be found in Table 20.

Participant collaboration
Specialisation of:
• Collaboration

A Participant collaboration describes the Participants and their collaboration
for an Action. One Participant collaboration should focus on a limited set of
participant types (e.g. Roles, Liable entities, Information templates etc.). The

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 46

collaboration is described through the switches to relations.

switches to (switched from)
Specialisation of:
• implication

This relation indicates what other participants are involved during or after
the use of a participant in a Collaboration. The involvement of the source
implies the involvement of the target in a process and possibly also an
interface between them.

Allowed source concepts:
• Start
• Participant involvement

Allowed target concepts:
• Participant involvement
• End

Navigation model
Specialisation of:
• Collaboration

A Navigation model depicts the possible navigations between components in
an app and should be based on one or several interaction flows.

triggers (triggered by)
Specialisation of:
• implication

This relation indicates that interacting with a Point of interaction or
Interaction component of an app triggers a change of the elements available
to the app user, resulting in navigating through the app (e.g. switching a
screen, showing a popup etc.). It is the implication that interaction with the
source triggers the target.

Allowed source concepts:
• Start
• Participant involvement (Interaction component or
Point of interaction)

Allowed target concepts:
• Participant involvement (Interaction component)
• End

Properties
 Conditions Additional conditions besides interacting with the source can be specified

through this property.
 Available navigation

patterns
The navigation patterns allowed or employed can be specified here. Some
navigation patterns have been described in D5.2.2.

Notification exchange
Specialisation of:
• Collaboration

A Notification exchange depicts the notifications that are exchanged
between different Orchestrations.

Table 13: Scope-specific concepts and relation concepts of the Collaborative Aspect

2.6 Assignment of Concepts to Aspect Specialisations
In this section the previously presented concepts will be assigned to groups similar to the Scope and Aspect
specific cells presented in Table 1. Those groups represent a set of elements that are recommended to be
used together and can be considered the “model types”. Some of the here used relation concepts create
connections between the groups as described in the previous sections (e.g. decomposition between
Business structure and Enterprise structure groups). The groups and additional details can be found in
Tables 14 to 34 and each group will be presented the first time it is introduced, while later on previous
groups that are reused will be referenced. Examples on how those groups could look in an implementation
can be found in section 3.2.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 47

2.6.1 Business Scope
The main focus of this Scope is on the high level of business, where several business entities are
participating in the creation of a value (e.g. product or service) for a customer with the goal of receiving
some compensation in return (e.g. money). It aims to capture the exchange of values between the different
participants. The major groups used here are:

Value structure group
The Value structure group describes the values, their structure and their variability that are of interest in
the current application domain. It is designed to cover products and services through values.
Concept Comment
Value The core for describing the value structure.
Value set To allow describing variability in the structure.
has value (value of) The core for structuring the values.
mandates value (mandated by
value) To allow limiting the variability in the structure.

configuration of (configured into)
annihilates (annihilates) In order to link values to their anti-values.

Table 14: Concepts in Value structure group

Market structure group
The Market structure group describes a company’s view on the market and the segments it targets.
Concept Comment
Market segment The core for describing the market structure.
Characteristic Used to describe market segments.

justifies (justified by) Indicates why certain values of a value structure are necessary, based
on the market structure.

contains (contained by) The general concept, to decompose the market structure.
specialisation of (generalisation
of)

The general concept, to describe specialisations in the market
structure.

has capability (capability of) The aspect-specific concept, to assign characteristics to segments.

Table 15: Concepts in Market structure group

Business structure group
The Business structure group describes companies and their distribution over several locations.
Concept Comment
Business entity The core instance for describing business structure.
Business role The core template for describing business structure.
Business capability The core capability for describing business structure.
Business entity access How to access business entities.
has chief (chief of)
provided value (can be provided
by)

The values provided by a capability. Typically a product or service as
well as the duration for delivery.

necessary compensation
(compensation for) The values asked in return in a capability.

provided at (can find business
capability) Where the capability can be made use of.

access business through (accesses
business)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 48

has business location (business
location of)

contains (contained by) The general concept, to decompose the business structure.
specialisation of (generalisation
of)

The general concept, to describe specialisations in the business
structure.

has capability (capability of) The aspect-specific concept, to assign capabilities to roles.
fulfils (fulfilled by) The aspect-specific concept, to describe instantiations.
owned by (owns) The aspect-specific concept, to state the owners of a business.

Table 16: Concepts in Business structure group

Location structure group
The Location structure group describes certain locations (physical or digital) in relation to other locations.
Concept Comment
Location The core for describing location structure.
contains (contained by) The general concept, to decompose the location structure.

Table 17: Concepts in Location structure group

Value exchange flow group
The Value exchange group describes the exchange of values between two or more businesses. It focuses
more on the sequence in which values have to be exchanged than the Business model.
Concept Comment
Value exchange flow Use different flows for different scenarios.

Value exchange The core element for describing a flow. It can be considered an action
of type “Value exchange”.

Start stimulus
End stimulus
Exchange control

with partner (partner of) Should only be two for the same value exchange and one of them
should be the initiator.

has initiator (initiator of) Should only be one for the one value exchange, who is also a partner
of the exchange.

followed by (preceded by) The aspect-specific concept, to specify the sequence and conditions
for the flow.

impacts (affected by) The aspect-specific concept, to allow describing the impact of a value
exchange on other actions.

detailed by (describes) The aspect-specific concept, to decompose actions into a finer
granularity.

has part (part of) The aspect-specific concept, to state what is contained by a value
exchange flow.

influences (influenced by) The inter-aspect concept, to specify what values are exchanged.

Table 18: Concepts in Value exchange flow group

Business model group
The Business model group describes the exchange of values between two or more businesses. It focuses
more on the general structure of exchanges and the dependency between those than the Value exchange.
Concept Comment
Business model Use different models for different scenarios.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 49

Value interface
The involvement of a participant (market segment, business entity or
business role) in exchanges of value. Should be considered a part of
the participant.

Start stimulus
End stimulus

Dependency control
Because of the occurrence formulas in Table 20 it should be possible
to also use Dependency controls with only one incoming and one
outgoing depends on relation.

interface part of (has value
interface)

exchanges value with (receives
value from)

exchanged value (exchanged in)
depends on (dependency of)

is for (has collaboration) The inter-aspect concept, to indicate on which actions the
collaboration is based on.

Table 19: Concepts in Business model group

In this Scope the products or services that are provided to customers are identified not in the Value
structure, but in the Business model. In the Business model the products or services sold by a Business entity
are determined through the outgoing exchanges value with relations that also have an incoming monetary
value in the same Value interface.
The Business model group is based on the e3value model5. Therefore the described business model deals
with several occurrences at once, which are specified in the start stimulus. The fractions on the depends on
relations and the Dependency control can be used to control the flow, multiplication and reduction of those
occurrences. The following formulas should be used to calculate the occurrences for different Dependency
control cases, where n is the amount of paths and x indicates the path in question if there are several:
Case Formula

Split AND-inclusion type 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

Split XOR-inclusion type6 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑥

∑ (𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖)𝑛
𝑖=1

Merge AND-inclusion type 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1 ∗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖1

Merge XOR-inclusion type 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑛

𝑖=1

Table 20: Formulas for calculating occurrences in Business models

In the case of a dependency merge of AND-inclusion type, all of the incoming occurrences in relation to the
fractions should be the same (i.e. using the above formula, if a different incoming relation instead of “1” is
used it should still lead to the same result). This is necessary to properly merge a previous dependency split
of AND-inclusion type. This is depicted in Figure 8, where both x and y should be the same amount of

5 For more information see (Gordijn and Akkermans, 2001) and http://e3value.few.vu.nl/ (accessed 17.01.2014)
6 Because of its nature, it can be used with only one outgoing dependency to change the fraction without changing the
occurrences.

http://e3value.few.vu.nl/

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 50

occurrences, if the left most and right most relations have the same fraction and independent of what the
other fractions in-between are.

Figure 8: Dependency control of AND type, where occurrences x and y should be the same

2.6.2 Enterprise Scope
The main focus of this Scope is on describing what activities are performed by humans in a certain company
in order to achieve certain goals. Oftentimes the goal is to process values (e.g. materials) to create
something of more value that is then provided to a customer for compensation. However, supporting
activities (e.g. financing, procurement etc.) can also be described in this Scope. The major groups used here
are:

Enterprise structure
The Enterprise structure group describes the inner structure of a company in terms of units and employees.
Concept Comment
Organisation unit The core instance to describe units in the enterprise structure.
Performer The core instance to describe employees in the enterprise structure.
Role The core template to describe employees in the enterprise structure.
Skill One of the capabilities for employees.
Knowledge The other capability for employees.
has manager (manager of) To indicate the manager of an organisation unit.
fulfils skill/knowledge
(skill/knowledge fulfilled by) Used with performers.

has skill/knowledge
(skill/knowledge of) Used with roles.

contains (contained by) The general concept, to decompose the enterprise structure.
specialisation of (generalisation
of)

The general concept, to describe specialisations of roles in the
enterprise structure.

fulfils (fulfilled by) The aspect-specific concept, to describe instantiations.

Table 21: Concepts in Enterprise structure group

Business process group
The Business process group describes the actions that are performed by humans to achieve a certain goal.
Concept Comment
Business process Preferably should have only one start and one main end.
Activity The core element for describing a process.

Event Can be used and reused in other processes to provide points of
reference between different processes.

Start
End
Decision Used to split a path. Its action can be considered of type “decide”.
Parallelism Used to split a path.
Synchronisation Used to merge paths.

Action type The aspect-specific concept, to allow categorising activities into
different types.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 51

specialisation of (generalisation
of) The general concept, to specialise action types.

instance of (has instance) The general concept, to indicate the action type of an activity.

followed by (preceded by) The aspect-specific concept, to specify the sequence and conditions
for the process.

impacts (affected by) The aspect-specific concept, to allow describing the impact of an
activity on other actions.

detailed by (describes) The aspect-specific concept, to decompose actions into a finer
granularity.

has part (part of) The aspect-specific concept, to state what is contained by a business
process.

influences (influenced by) The inter-aspect concept, to specify what values are consumed or
produced.

requires (required by) The inter-aspect concept, to indicate the use or adaptation of
participants.

has responsible (responsible for) The inter-aspect concept, to state the responsible for an activity.
has performer (performs) The inter-aspect concept, to state the performer for an activity.

Table 22: Concepts in Business process group

Participant collaboration group
The Participant collaboration group describes the collaboration of several participants of the same or
similar type (e.g. liable entities).
Concept Comment
Participant collaboration Use different collaborations for different scenarios.

Participant involvement
Any type of participant, but should be limited to similar types in one
collaboration (e.g. roles and performers or liable entities or
information templates).

Start
End
switches to (switched from)
contains (contained by) The general concept, to decompose a collaboration into its contents.

is for (has collaboration) The inter-aspect concept, to indicate on which actions the
collaboration is based on.

involved participant (involved in)

The inter-aspect concept, to indicate what specific template of
participants is involved. Target can be any type of participant, but
should be limited to similar types in one collaboration (e.g. roles and
performers or liable entities or information templates).

Table 23: Concepts in Participant collaboration group

The following groups should also be available in this Scope:
 Value structure group (Table 14) – Should be used to describe what a business process achieves

and what it consumes/wastes.
2.6.3 Requirements Scope
The main focus of this Scope is on describing what resources are necessary and how they should be used to
achieve a certain goal. This description follows a similar process based structure to the one used in the
Enterprise Scope, to allow facilitate the alignment between the two. The major groups used here are:

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 52

Permission pool
The Permission pool group describes structures on which access permission is based. Requests fitting into
one of the described structures should be granted, all others rejected.
Concept Comment

Permission rule
The core of the permission pool, on which permissions for a request
are granted. If a request does not fit to the structure of any
permission rule then access should be prohibited.

for subject (permitted subject of) If several subjects are specified for one rule then the intersection of
those is denoted.

for action type (permitted action
type of)

If several actions are specified for one rule then the intersection of
those is denoted.

for resource (permitted resource
of)

If several resources are specified for one rule then the intersection of
those is denoted.

basis for (based on) To keep track which requirements are covered.

implemented by (implements) To keep track of which permission rules are covered through access
means.

Table 24: Concepts in Permission pool group

Mobile support structure
The Mobile support structure group describes mobile applications and their capabilities through
components and interaction functionalities. In this Scope mostly the available apps are of interest.
Concept Comment

Mobile app

The core instance to describe mobile support structure. The point
where to switch from template to instance in the description has to
be decided by the user. A recommendation is to see finished
applications as instances.

Mobile app template The core template to describe mobile support structure.
Mobile app capability A general capability for describing mobile apps.
Point of interaction A simple interaction part of a mobile app.

Interaction component A composite of interactions that can be further described by Points of
interaction.

contains (contained by) The general concept, to decompose the mobile support structure
(both apps and capabilities).

specialisation of (generalisation
of)

The general concept, to describe specialisations in the mobile support
structure.

has capability (capability of) The aspect-specific concept, to assign capabilities to app templates.
fulfils (fulfilled by) The aspect-specific concept, to describe instantiations.
owned by (owns) The aspect-specific concept, to state the owners of an app.

Table 25: Concepts in Mobile support structure group

Information space
The Information space group describes what information is available from where and details information by
describing its general data.
Concept Comment

Information instance
The core instance to describe an information space. In this case an
instance is not necessarily the data for information. It is
recommended to use instances to indicate that the same data object

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 53

should be used by different processes/actions during the execution
for one case.

Information template
The core template to describe an information space. Reusing the
information template does not necessarily mean reusing the same
data object, only using data complying with the information template.

Entity A capability to describe the data structure of information.
Relation A capability to describe the data structure of information.
Attribute A capability to describe the data structure of information.
Information access
Location control
relates (related by)
accessed through (access for)
execute on (endpoint for)
contains (contained by) The general concept, to decompose information.
specialisation of (generalisation
of) The general concept, to describe specialisations of information.

has capability (capability of) The aspect-specific concept, to assign capabilities to information
templates.

fulfils (fulfilled by) The aspect-specific concept, to describe instantiations.

owned by (owns) The aspect-specific concept, to state the owners of information and
data.

Table 26: Concepts in Information space group

Requirements process group
The Requirements process group describes the actions that are performed on resources to achieve a certain
goal.
Concept Comment

Requirements process
Several can be used to describe the same action and each one could
focus on different types of resources. Should preferably have only
one start and one main end.

Activity The core element for describing a process. Focusing in this group
more on the used participants.

Event Can be used and reused in other processes to provide points of
reference between different processes.

Start
End
Decision Used to split a path. Its action can be considered of type “decide”.
Parallelism Used to split a path.
Synchronisation Used to merge paths.

Action type The aspect-specific concept, to allow categorising activities into
different types.

strictly requires (strictly required
by) Indicates necessary participants.

supported by (supports) Indicates optional participants.
specialisation of (generalisation
of) The general concept, to specialise action types.

instance of (has instance)

The general concept, to indicate the action type of an activity.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 54

followed by (preceded by) The aspect-specific concept, to specify the sequence and conditions
for the process.

impacts (affected by) The aspect-specific concept, to allow describing the impact of an
activity on other actions.

detailed by (describes) The aspect-specific concept, to decompose actions into a finer
granularity.

has part (part of) The aspect-specific concept, to state what is contained by a
requirements process.

influences (influenced by) The inter-aspect concept, to specify what values are consumed or
produced.

has responsible (responsible for) The inter-aspect concept, to state the responsible for an activity.
has performer (performs) The inter-aspect concept, to state the performer for an activity.

Table 27: Concepts in Requirements process group

The following groups should also be available in this Scope:
 Value structure group (Table 14) – Should be used to describe what a process achieves and what it

consumes/wastes.
 Enterprise structure group (Table 21) – To indicate who is performing and who is responsible for an

action.
 Participant collaboration group (Table 23) – Similar to enterprise scope.

2.6.4 App development Scope
The main focus of this Scope is on the capturing and reviewing of requirements for the development of
mobile apps. Those requirements are captured through the interactions with the app, both in a structural
and a behavioural manner, which can also be used to communicate the intended way of involving the app
in a business process. The major groups used here are:

Interaction flow group
The Interaction flow group describes the interactions that are performed between a device and its user to
achieve a certain goal.
Concept Comment
Interaction flow Should preferably have only one start and one main end.

Interaction A core element for describing an interaction flow. It can be
considered an action of type “Interaction”.

Function execution A core element for describing an interaction flow. It can be
considered an action of type “Function execution”.

Event Can be used and reused in other processes to provide points of
reference between different processes.

Start
End
Path split Used to split a path.
Synchronisation Used to merge paths.

Action type The aspect-specific concept, to allow categorising actions into
additional types.

specialisation of (generalisation
of) The general concept, to specialise action types.

instance of (has instance) The general concept, to indicate the action type of an interaction or a
function execution.

followed by (preceded by) The aspect-specific concept, to specify the sequence and conditions
for the flow.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 55

impacts (affected by) The aspect-specific concept, to allow describing the impact of an
action on other actions.

detailed by (describes) The aspect-specific concept, to decompose actions into a finer
granularity.

has part (part of) The aspect-specific concept, to state what is contained by an
interaction flow.

influences (influenced by) The inter-aspect concept, to specify what values are consumed or
produced.

requires (required by)
The inter-aspect concept, to indicate the use or adaptation of
participants. In this case it should focus on the Points of interaction
and Interaction components that are used.

Table 28: Concepts in the Interaction flow group

Navigation model group
The Navigation model group describes what navigation is possible through a mobile app.
Concept Comment

Navigation model One navigation model can capture several interaction flows, but it
should not depict several mobile apps.

Participant involvement Should represent either an Interaction component or a Point of
interaction.

Start
End
triggers (triggered by)
contains (contained by) The general concept, to decompose a collaboration into its contents.

is for (has collaboration) The inter-aspect concept, to indicate on which actions the
collaboration is based on.

involved participant (involved in)
The inter-aspect concept, to indicate what specific template of
participants is involved. Targets here should be either Interaction
components or Points of interaction.

Table 29: Concepts in the Navigation model group

The following groups should also be available in this Scope:
 Value structure group (Table 14) – Should be used to describe what a flow achieves and what it

consumes/wastes.
 Mobile support structure group (Table 25) – In this Scope the mobile support structure should be

used to describe the capabilities of an app in terms of Points of interaction and Interaction
components.

Triggers of a mobile app are indicated in the Interaction flow. When an interaction is followed by a function
execution, then it means that one of the assigned points of interaction or interaction components is the
source for triggering something.
The Interaction flow can also be used to differentiate between downloading and streaming. Downloading
means that the device first receives all the data, loads it into a part of the application which is then read by
the user. Streaming on the other hand means that the downloading by the device and reading by the user is
happening in parallel.
There are two possible ways of describing that logging in is necessary:

1. Use the condition of the followed by relation in the interaction flow to state that the user has to be
logged in. A process handling the case that the user tries to access parts without being logged in
could then describe the process of logging in.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 56

2. Describe the action of logging in (just an action or further describe it through a process) and use a
positive impacts relation (e.g. “Enables” or “Necessary to enable”) to all other actions that require
the login.

The second approach is recommended, because it creates a relation for dependency which can be queried.
2.6.5 App execution set-up Scope
The main focus of this Scope is on the description of app orchestrations, by specifying the sequences of app
executions and the possible paths in an orchestration similar to a process. This description follows a similar
process based structure to the one used in other Scopes, to allow facilitate the alignment with them. Since
it describes an orchestration on a mobile device (“local” orchestration) and mobile devices are usually not
switching the user (everybody uses their own mobile device), a collaboration of several such “local”
orchestrations might be necessary to properly implement a business or requirements process. The major
groups used here are:

Orchestration group
The Orchestration group describes the execution of apps to achieve a certain goal.
Concept Comment

Orchestration
Additional constraints of an execution engine on what is allowed
should be considered here. They however depend on the used
execution engine.

App execution A core element for describing an orchestration. It can be considered
an action of type “execution”. Can also depict other orchestrations.

Event Can be used and reused in other processes to provide points of
reference between different processes.

Notification received
Entry
Halt

Path split
Used to split a path. Consider splitting one path into several (i.e. not
an XOR split) to be similar to creating multiple threads in
programming.

Synchronisation Used to merge paths.

executes (executed in) Replaces the requires relation to only focus on the app that is
executed.

notifies (notified by) Replaces the impacts relation to only focus on notifications between
orchestrations.

has message (message of)
designed for (has orchestration)

followed by (preceded by) The aspect-specific concept, to specify the sequence and conditions
for the flow.

detailed by (describes) The aspect-specific concept, to decompose actions into a finer
granularity.

has part (part of) The aspect-specific concept, to state what is contained by an
interaction flow.

influences (influenced by) The inter-aspect concept, to specify what values are consumed or
produced.

Table 30: Concepts in Orchestration group

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 57

Notification exchange group
The Notification exchange group describes what notifications are exchanged between which
orchestrations. The involved participants are handled through the procedural elements used here.
Concept Comment

Notification exchange It describes the notifications between several orchestrations, so it is
also for several actions.

Orchestration
App execution
Notification received
Entry
executes (executed in)
notifies (notified by)
has message (message of)
contains (contained by) The general concept, to decompose a collaboration into its contents.

is for (has collaboration) The inter-aspect concept, to indicate on which actions the
collaboration is based on.

Table 31: Concepts in Notification exchange group

The following groups should also be available in this Scope:
 Value structure group (Table 14) – Should be used to describe what an orchestration achieves and

what it consumes/wastes.
 Mobile support structure group (Table 25) – In this Scope the mobile support structure is mostly

used to state which apps are executed in an orchestration.
 Information space group (Table 26) – Can be used here to describe the messages/notifications that

are sent in an orchestration.
One of the goals of this Scope is to provide input, with some additional adaptations outside of the
specification, to workflow or orchestration execution engines. However, some execution engines might not
be able to handle all of the possible cases that can be modelled (e.g. splitting of one thread into several,
OR-splits, more than one entry in an orchestration etc.). Therefore the abilities of the chosen engine should
be considered when creating orchestration models.

2.6.6 Evaluation Scope
The main focus of this Scope is on the evaluation performance indicators, measures and activities. In
addition to describing the process of how the evaluation is carried out and what resources are used,
mathematical descriptions (to a certain degree) can be used to formalise performance indicators and
measures that can later be calculated. The major groups used here are:

KPI structure group
The KPI structure group describes the key performance indicators and how they are calculated. The later
part is denoted through the structure of the KPIs.
Concept Comment
Constant
Variable Together with the function and operands allows specifying formulas.
KPI The core for describing the KPI structure.
Level
has operand (operand for) To allow building formulas through variables.
covers also (covered by)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 58

achieves (achieved by)
condition for (under condition)

Table 32: Concepts in KPI structure group

Evaluation process group
The Evaluation process group describes the actions that are performed by humans to evaluate an action or
a value through KPIs.
Concept Comment
Evaluation process

Evaluation action The core element for describing a process. It can be considered an
action of type “evaluation”.

Event Can be used and reused in other processes to provide points of
reference between different processes.

Start
End
Decision Used to split a path. Its action can be considered of type “decide”.
Parallelism Used to split a path.
Synchronisation Used to merge paths.

Action type
The aspect-specific concept, to allow categorising actions into
additional types. Can be used to indicate the data collection, data
transition and data processing subtypes of an evaluation action.

evaluates (evaluated by) Use this to indicate what is evaluated.
performed on (in performance of) Use this to indicate on what data an evaluation action works.
specialisation of (generalisation
of) The general concept, to specialise action types.

instance of (has instance) The general concept, to indicate the action type of an action.

followed by (preceded by) The aspect-specific concept, to specify the sequence and conditions
for the process.

impacts (affected by) The aspect-specific concept, to allow describing the impact of an
action on other actions.

detailed by (describes) The aspect-specific concept, to decompose actions into a finer
granularity.

has part (part of) The aspect-specific concept, to state what is contained by an
evaluation process.

influences (influenced by) The inter-aspect concept, to specify what values are consumed or
produced.

requires (required by) The inter-aspect concept, to indicate the use or adaptation of
participants.

has responsible (responsible for) The inter-aspect concept, to state the responsible for an activity.
has performer (performs) The inter-aspect concept, to state the performer for an activity.

Table 33: Concepts in Evaluation process group

The following groups should also be available in this Scope:
 Enterprise structure group (Table 21) – The enterprise structure is used in this Scope to specify

who is participating in the evaluation.
 Participant collaboration group (Table 23) – Similar to enterprise scope.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 59

Through the use of has operand relations, Constants and Variables it is possible to describe formulas for the
calculation of KPIs in a structured way. The here considered types are numbers, booleans and sets (not
ordered) of both (examples with sets can be found below).

For some functions the order of the provided operands is relevant, meaning that a different operand order
also creates a different result. To determine the order of operands the Order number property of the has
operand relation should be used. Therefore, before calculating a value the operands should first be
arranged based on this property in ascending order and passed to the function in the resulting sequence.
For usability it is recommended that operands with the same order number are ordered arbitrary next to
one another and if the Order number is missing it is assumed to be infinite (e.g. the following represents a
sequence of properly arranged order numbers: “1 3 3 3 6 ∞ ∞”).

Many functions are binary functions (i.e. operate on two operands or arguments). If more than two
operands are provided for a binary function, then several function executions have to be performed in a
chain according to the order of the operands (if the order is relevant, otherwise in any order)7. The first
execution should take the first to operands, while all other executions should take the result of the
previous execution as the first argument and the next not used operand in the chain as the second
argument. For example a subtraction using the operands “10”, “7”, “4” and “2” should first calculate “10 –
7 = 3”, then “3 – 4 = -1” and then “-1 – 2 = -3” with “-3” as the end result.

Also the here described binary functions accept several numbers, but can also use one set as an operand. In
this case the binary operation should be performed on each value of that set and the result should be again
a set. For example a subtraction using the operands “10” “[1, 2, 3]” and “4” should first calculate “[10 – 1,
10 – 2, 10 – 3 = [9, 8, 7]” and then “[9 – 4, 8 – 4, 7 – 4] = [5, 4, 3]” with “[5, 4, 3]” as the end result. It should
be noted that when the order is relevant, there is also a difference between “Set X Number” and “Number
X Set” (where X is the function/operation). Using more than one set as an operand is not considered here
to prevent errors due to different lengths.

Additionally there are aggregation functions (aggreg. func.), which work on a set of values and create as a
result a single value. When such a function is provided with several single values and sets as operands, then
all of those numbers should first be assembled to a single set on which the function is then performed. For
example when using sum on the operands “10”, “[1, 2, 3]” and “4”, then the sum function should be
performed on one set of “[10, 1, 2, 3, 4]” and result in “20”.

Furthermore there are comparative functions (comp. func.), which are also binary functions and compare
one operand to the other. If more than two operands are used then the same rules as described for the
binary functions apply. This means building a chain of function executions based on the order (if the order
is relevant) and in case sets are used to perform the function for each value of the set. For example when
using the “smaller than” function with the operands “2”, “[4, 6, 8]” and “10”, each value of the set has to be
larger than the lower ordered values (in this case larger than 2) and smaller than the higher ordered values
(in this case smaller than 10). Unlike the other binary functions however, more than one set can be used.
Using the “smaller than” function again for an example on the operands “[4, 6, 7]” and “[5, 8, 9]”, each of
the numbers of the first set has to be smaller than any of the numbers of the second set. In this example
the result should be “false” because “6” (as well as “7”) is not smaller than “5”.

It is recommended to provide the following functions:

7 In other words: Break it down to several binary operations.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 60

Function Input8 Output Order Behaviour

Addition
(Binary func.)

Several
numbers,
max. one set

One number
or set Irrelev.

Simple addition of all operands. When breaking
it down to a chain of binary executions the order
is irrelevant. Note that this is not the sum
function for sets.

Subtraction
(Binary func.)

Several
numbers,
max. one set

One number
or set Relev. Simple subtraction where binary subtractions

are performed according to the operand order.

Multiplication
(Binary func.)

Several
numbers,
max one set

One number
or set Irrelev.

Simple multiplication of all operands. When
breaking it down to a chain of binary executions
the order is irrelevant. Note that this is not the
product function for sets.

Division
(Binary func.)

Several
numbers,
max one set

One number
or set Relev. Simple division where binary divisions are

performed according to the operand order.

Power
(Binary func.)

Several
numbers,
max one set

One number
or set Relev.

It is the power function performed according to
the operand order. This function can also be
used to take any root.

Modulo
(Binary func.)

Several
numbers,
max one set

One number
or set Relev.

The modulo function returns the remainder of a
division and should be performed according to
the operand order. For example “8 modulo 3” is
“2”.

Negation
(Unary func.)

One number,
boolean or
set

One number,
boolean or
set

Irrelev.

This is a unary function (i.e. only one operand) of
negation. For boolean it means turning true to
false and vice versa. For numbers it means
turning positive numbers negative and vice
versa. For sets it is executed on each value of the
set.

Sum
(Aggreg. func.)

Several
numbers
and/or sets

One number Irrelev. The sum (addition) of all the values.

Product
(Aggreg. func.)

Several
numbers
and/or sets

One number Irrelev. The product (multiplication) of all the values.

Minimum
(Aggreg. func.)

Several
numbers
and/or sets

One number Irrelev. The smallest number of all the values.

Maximum
(Aggreg. func.)

Several
numbers
and/or sets

One number Irrelev. The largest number of all the values.

Count
(Aggreg. func.)

Several
numbers
and/or sets

One number Irrelev. The amount of values from the operands.

8 If the input can be a set, then the set should only contain values of the other allowed types, i.e. if numbers and set,
then only sets with numbers; if boolean and set then only sets with boolean; if numbers and boolean and sets, then
the set can contain either numbers or boolean

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 61

Function Input8 Output Order Behaviour
Average
(Aggreg. func.)

Several
numbers
and/or sets

One number Irrelev.
The average of all the operands. Can also be
calculated by using the sum and count functions:
sum / count.

Variance
(Aggreg. func.)

Several
numbers
and/or sets

One number Irrelev.

The variance from mathematical probability
theory and statistics. It measures how far the
input values are spread out. Can also be
calculated using the other functions: sum(
power[subtraction(X, average[X]), 2]) /
count.

Equal to
(Binary comp.
func.)

Several
numbers,
booleans
and/or sets

One boolean Irrelev.

This function should return true if all operands
are equal. It differs from the “And” function in
that if all values are false, this function should
return true.

Different than
(Binary comp.
func.)

Several
numbers,
booleans
and/or sets
(numeric)

One boolean Irrelev.

This function should return true if all operands
are different from one another. When using
boolean values it doesn’t make sense to have
more than two values. Therefore only using
numeric sets makes sense.

Smaller than
(Binary comp.
func.)

Several
numbers
and/or sets

One boolean Relev.
This function should return true if the lower
ordered operands are smaller than the higher
ordered operands.

Smaller or
equal
(Binary comp.
func.)

Several
numbers
and/or sets

One boolean Relev.
This function should return true if the lower
ordered operands are smaller or equal to the
higher ordered operands.

Larger than
(Binary comp.
func.)

Several
numbers
and/or sets

One boolean Relev.
This function should return true if the lower
ordered operands are larger than the higher
ordered operands.

Larger or
equal
(Binary comp.
func.)

Several
numbers
and/or sets

One boolean Relev.
This function should return true if the lower
ordered operands are larger or equal to the
higher ordered operands.

And
(Aggreg. func.)

Several
boolean
and/or sets

One boolean Irrelev. This function should return true if all the values
of the operands are true.

Or
(Aggreg. func.)

Several
boolean
and/or sets

One boolean Irrelev. This function should return true if one of the
values of the operands is true.

Load value
(Interface
func.)

--- One number
or boolean ---

This function should allow loading a value from
outside of the modelling tool (e.g. from a
spreadsheet, a database, Linked Data etc.).
Therefore the input and the order of operands
are unspecified here.

Load set
(Interface
func.)

One set
(numeric or
boolean)

This function should allow loading values as a set
from outside of the modelling tool (e.g. from a
spreadsheet, a database, Linked Data etc.).
Therefore the input and the order of operands re
unspecified here.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 62

Function Input8 Output Order Behaviour
Load property
value
(Interface
func.)

--- One number
or boolean ---

This function should allow loading a value from
inside of the modelling tool (e.g. from an
attribute of an object or relation). Therefore the
input and the order of operands are unspecified
here.

Load property
set (Interface
func.)

--- One number
or boolean ---

This function should allow loading values as a set
from inside of the modelling tool (e.g. from an
attribute of an object or relation). Therefore the
input and the order of operands are unspecified
here.

Table 34: Recommended functions for Variables and KPIs

2.7 Mechanisms and Algorithms
This section proposes some mechanisms or algorithms to support the previously described procedures. It
will focus on describing what the goal of a mechanism or algorithm is and what it should be capable of
doing. Additional assumptions and prerequisites can be posed by the implementation. Details about how
the input is acquired and how the output should be presented are omitted (unless absolutely necessary),
since they are highly dependent on the possibilities of the used implementation approach.

2.7.1 Determine Instances/Templates for required Capabilities
The goal of this feature is to find matching instance and/or templates for a set of required capabilities. As
previously described, instances can fulfil and templates can have capabilities. These can be checked against
a set of required capabilities to determine which instances/templates fulfil the requirement. The set of
required capabilities can be acquired through different means, for example it can be directly provided by a
user or it can be based on the capabilities attached to a template. The latter case can be used to search for
instances that fulfil the role according to its capabilities. This can be applied for example with Business
entities and their provided Business capabilities. A requirement can be posed in the form of providing a
certain value, for a certain price at a certain location. The capabilities provided by the available Business
entities can then be checked against that requirement to find a set of possible business partners. The main
application of this feature is in steps 1 and 2 of the procedure (see section 2.1.1).
This feature should be capable to:
 Receive one or several required Capabilities as input.
 Access available instances and/or templates and their fulfilled Capabilities.
 Compare the required Capabilities against the Capabilities fulfilled by an instance/template.

o The comparison depends on the used Capabilities. For example comparing the provided
value of a Business capability requires that either the value or a more general value is
provided. When comparing skill levels then the provided Skill has to be better than the
required one (higher levels of skill are better). When comparing costs or compensation
then the available number should be smaller than the required one (lower costs are
better).

 Return the available instances/templates that adhere to the required Capabilities.
o The result can further contain some information about how much a fitting

instance/template deviates from the required Capabilities. This can be useful for example
when looking for Performers to prevent choosing over-qualified personnel.

2.7.2 Derivation of Participant collaboration
The goal of this feature is to derive a Participant collaboration out of already available processes to reduce
the workload on the modeller. Since the Collaboration is dependent on an action, the Participant
collaboration can be automatically derived from a process describing the action to some degree. Manual

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 63

adaptation might however still be necessary to complete a collaboration that properly represents reality.
This feature can also be used in combination with a comparison (see for example section 2.7.11). Two
Participant collaborations can be created for distinct processes, which can also be from different Scopes,
and then structurally compared to one another. If both processes should have the same collaboration, then
there should be no differences between the two Participant collaborations. The main application of this
feature is in steps 2, 3 and 4 of the procedure (see section 2.1.1).

This feature should be capable to:
 Receive a process and the description of the desired participants as input.
 Create a Participant collaboration, which can be based on different assumptions.

o The involvement of a participant in an activity is denoted by the requires relation (and its
sub-relations). A switch between participants is indicated by two actions that require
different participants.

o One possible assumption would be that “if more than one participant element of the same
type is required by the same action, then there should be switches to relations between all
of them in both directions”. However different implementations can pose different
assumptions.

2.7.3 Interaction stepper
The goal of this feature is to provide the user with a possibility to “walk through” or “step through” an
interaction process in order to test and evaluate a mobile app concept as well as detect gaps in the
requirements. It iteratively shows details about the actions and especially interactions with mobile devices
executed by humans in order to showcase how a mobile app could be used to achieve a certain goal. For
this the Interaction flows and Participant descriptions created in the App-development Scope should be
used. However, it is also possible to start with a higher level process (e.g. a business process) that is
decomposed into interaction flows. The main application of this feature is in step 3 of the procedure (see
section 2.1.1).
This feature should be capable to:
 Receive a process, the necessary sub-processes (i.e. processes further detailing actions) and the

description of the mobile app participants as input.
 Step through the actions according to their sequence, starting from an Initiation event. This should

happen at a speed with which the user can keep up with.
o When a path is split (e.g. because of a decision or a parallelism), then the feature should

adhere to the splits semantics (AND, OR, XOR). If not all of the paths should be selected, it
is recommended to ask the user instead of randomly choosing a path.

 Show details for each action that is visited if available (description of the activity, which Interaction
components / Points of interaction are used etc.). For interactions it is recommended to show a
mockup of the app and highlight the parts the user should interact with (if available).

 Directly step into another process, when it is further detailing the action that is visited. This
functionality is optional, but recommended.

2.7.4 Derivation of Orchestration
The goal of this feature is to derive an Orchestration out of already available processes to reduce the
workload on the modeller. Since both the source and the target of the derivation are processes, it is
possible to automatically derive parts of an Orchestration process to some degree (e.g. App executions
based on actions that require mobile apps, Entries and Halts based on Initiation/Termination events etc.).
However, manual adaptations to the result might still be necessary. The derivation can also create different
results based on certain assumptions for different cases. For example instead of creating one orchestration
for one process, several orchestrations can be created, each one for a certain role, based on the
assumption that each role will execute its own orchestration. The main application of this feature is in step
3 of the procedure (see section 2.1.1).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 64

This feature should be capable to:
 Receive a process and the description of the mobile app participants as input.
 Create an Orchestration based on certain assumptions.

o Those can be assumptions like “each Action that requires a Mobile app or Mobile app
template should be an App execution in the Orchestration” or “each Role in the source
process should have a separate Orchestration”.

2.7.5 Gathering access requirements
The goal of this feature is to gather access requirements described in processes and support the user in
creating Permission Rules. When the requirement of participants in a process (e.g. stated through the
requires relations from Actions) follows a similar structure to the description of permission rules (as it has
been recommended), then it is easy to automatically create initial permission rules based on the
requirements. These automatically created rules can then be checked and enhanced by an expert to create
a security or access policy. The main application of this feature is in step 5 of the procedure (see section
2.1.1).

This feature should be capable to:
 Receive actions and/or processes as input. The actions should use the requires relation (or one of

its sub-relations) to state the requirement for accessing a participant.
 Create Permission rules based on the stated access requirements.

o It is recommended to flag the permission rules created this way to be checked by an
expert.

o Also it is recommended to skip requirements for which a Permission rule already exists.
2.7.6 Access requirement coverage check
The goal of this feature is to check if the access requirements based on a process are covered by the
currently described permission rules. When the requirement of participants in a process (e.g. stated
through the requires relations from Actions) follows a similar structure to the description of permission
rules (as it has been recommended), then the two can be compared against one another. With this
comparison the structure of the subjects, actions and resources has to be considered. For example, when
Role X requires access to a certain resource, Role Y is permitted to get access to that resource and Role X is
a specialisation of Role Y, then the access requirement is covered. The result should indicate which access
requirements are not sufficiently covered, which can be used as input to solve the problem (e.g. either the
requirement is not allowed due to legal constraints and the process has to be changed or the set of
permission rules has to be changed). The main application of this feature is in step 5 of the procedure (see
section 2.1.1).

This feature should be capable to:
 Receive permission rules and actions and/or processes as input. The actions should use the requires

relation (or one of its sub-relations) to state the requirement for accessing a participant.
 Check each access requirement against the permission rules. The question that is asked here is

“does a Permission rule exist that permits access for an access requirement?”
 Return the access requirements that are not covered by permission rules.

o Additional information can be attached to this, for example permission rules that might be
similar or access requirements that have to be manually checked against certain permission
rules, because human readable constrains have been used.

2.7.7 Calculation of KPIs/Variables
The goal of this feature is to calculate definite values for KPIs and variables, based on their described
structure. The automatic calculation of KPIs can support the evaluation, since KPIs are used there as
measures. The details about the structure and description of KPIs and variables have been presented in
previous sections (see sections 2.5.1.1 and 2.6.6). In addition to calculating the values, they can also be

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 65

used to automatically determine the Level that a KPI has achieved. The main application of this feature is in
step 6 of the procedure (see section 2.1.1).

This feature should be capable to:
 Receive KPIs, their structure and their links to levels as input as well as any external data that is

necessary.
 Calculate the values for each Variable and KPI, starting from the parts that have no further

operands and working up towards the elements that are not used as operands.
 Also determine what Level a KPI achieves, if they are available and the KPIs are put in relation to

them (achieves relation).
 Return the result of the calculation.

o The result can additionally be stored as a property of the KPI.
2.7.8 Simulation of Procedural models
The goal of this feature is to simulate the execution of procedural models (e.g. Business process) in order to
gather data about it without the necessity of carrying it out. Often the simulation of processes is used to
estimate execution times and costs, but it can also be used to identify the paths in a process and their
probabilities. Such data can then be used to look for optimisation potential in the process. Different
approaches can be used to achieve the simulation and they have different assumptions and pose different
restrictions on the processes (e.g. no loops, no jumps between different paths etc.). While those
restrictions have to be considered when creating the models, they are based on the chosen approach and
implementation, which is not covered in this section. The main application of this feature is in step 6 of the
procedure (see section 2.1.1), but can also be used to generally simulate processes.

This feature should be capable to:
 Receive a Process, its Initiation event as a starting point and the participants and values necessary

for the simulation as input (e.g. when simulating costs then the “Money” value and the influences
relations towards it).

 Perform the simulation, during which the desired data is gathered.
o It is recommended to let the user decide what data should be gathered. Typical data that is

gathered:
 Costs (e.g. quantity of negative influences relations towards “Money” value)
 Running times (e.g. quantity of negative influences relations towards “Time” value

or positive influences relations towards “Duration” anti-value)
 Resource usage (e.g. requires relations towards any or a specific type of

participant)
 Value creation and consumption (e.g. quantity of influences relations towards

Values)
o Additionally the data is usually gathered for the different paths in a process (if more than

one exists) and aggregated into a minimum, maximum and average value over all paths.
When probabilities for splits in a process sequence are available, then the probability of
each path can also be determined.

o Also different strategies for collecting the data along a path are necessary. For example
when confronted with parallel running actions (or action sequences), costs can simply be
summed up while for the time the largest of the parallel running sequences has to be used.

 Return the simulation result.
2.7.9 Business model evaluation
The goal of this feature is to calculate the estimated revenue and expenses for a certain business model.
Such estimates can then be used to compare different business models based on their profit. Both

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 66

expenses and revenues for each participant in a business model are described through the exchanges value
with relations. Using those and the occurrences from the start stimuli a projection of the values exchanged
and their valuation for each participant can be determined. The main application of this feature is in step 6
the procedure (see section 2.1.1), but can also be used to generally evaluate business models.

This feature should be capable to:
 Receive a Business model and the participants and values used in it as input.
 Determine the occurrences for each exchange of values based on the available constructs (start

stimuli, depends on relations, their fractions and dependency controls).
 Aggregate for participants the value exchanges and their valuations based on the direction of the

value exchanges.
 Return the aggregated result.

2.7.10 Serialisation of models as Linked Data
The goal of this feature is to serialise models or parts of models in a uniform format, to allow. The Resource
Description Framework (RDF) and the concepts from Linked Data should be used for the serialisation
format. Details which update the description from D3.1.1 can be found in section 3.3.1. The result can then
be for example uploaded to a Linked Data server, where it can be further connected to other data and
queried using SPARQL. This is a general feature that can be used throughout the procedure.

This feature should be capable to:
 Receive one or several models as input.
 Create the Linked Data based on the input.

o It is strongly recommended to use the Global identifier (see section 2.3.2) as the URI for the
RDF resources (if applicable) and to directly transform the parts from the Property collector
(also section 2.3.2) directly into triples, in order to allow linking the data to other Linked
Data sources.

2.7.11 Comparison of model serialisations in Linked Data
The goal of this feature is to determine and communicate the difference between two models (e.g. an older
version compared to a newer) that have been serialised as Linked Data. It can be used to identify
differences between different versions or for synchronisation of parts from the collaborative and
procedural Aspects. The latter can be achieved when deriving the new Collaboration based on an updated
Process (describing an Action) and checking the new Collaboration against the previous one9. The output
can either be presented to the user or can be provided in a machine-readable manner to be further
processed. This is a general feature that can be used throughout the procedure.

This feature should be capable to:
 Receive two Linked Data serialisations as input, one considered the source and the other

considered the target of the comparison.
 Identify and return the differences between the two serialisations.

o Since both should be RDF, and therefore based on triples the differences can be
categorised in Add (triple to source) and Remove (triple from source) in relation to the
target.

2.7.12 Model querying
The goal of this feature is to query data from created models. Such data can then be used to check for
correctness and completeness of models as well as to create reports. This is a general feature that can be
used throughout the procedure.

9 Such an approach for synchronisation is presented, because the derivation of collaborations is not considered 100%
automated and can contain manual adaptations, therefore also complicating 100% automatic synchronisation.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 67

This feature should be capable to:
 Receive a query and the model data it should be executed on it as input.

o It is recommended to allow querying for objects, relations and properties as well as to filter
those based on certain objects, relations and properties (e.g. property equal to, object id
equal to, in relation to object etc.).

 Perform the query.
 Return the result of the query.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 68

3 IMPLEMENTATION SPECIFIC RECOMMENDATIONS
This section provides some recommendations on how the previously described specification can be realised
to facilitate implementation. It is based on the experience and knowledge gained through the existing
prototypes delivered in D3.4.1 and assumes for most of its part similar approaches to the implementation
(e.g. graphical modelling tool, both visualised and attribute-like relations etc.). The descriptions here should
be understood as recommendations and propositions, from which deviations are possible and even
encouraged if it better fits or improves a specific case. Also it is possible to handle certain parts of the
specification differently to improve certain cases. For example in many scenarios the approach for
describing levels for KPIs and their achievement isn’t necessary in such a detail and can be simplified to the
“traffic light” approach (levels green, yellow and red) in order to improve user friendliness for the modeller.
However, the implementer should be aware of the implications that such changes result in.

3.1 Recommended Classes, Relations and Attributes
Different concepts and sub-concepts have been presented through sections 2.3-2.5 and assigned to groups
in section 2.6. When implementing those concepts in a modelling tool a balance has to be struck between
types that should be handled by separate objects and types that are handled through attribute values. In
some cases certain concepts can be presented as attributes (e.g. Business entity access) or simplified (e.g.
Levels and their hierarchy simplified to commonly used “traffic light” with red, yellow and green).

Table 35 and Table 36 provide a recommendation of classes, relations and attributes for the
implementation. The class/relation/attribute names correspond to the names of the concepts/properties
and further details (relation targets, descriptions etc.) can be found in the previous chapters. Also the
generally used properties are omitted in the table (see 2.3.2). The here described
classes/relations/attributes should be considered as suggestions, which means that they can be changed or
new ones can be added as necessary. The general idea is that classes are drawn on the modelling canvas,
attributes can be accessed through a separate window (e.g. “Notebook”) and relations can either be drawn,
treated similar to attributes or both. A metamodel describing the recommended implementation can be
found in the appendix (section 6.2, Figure 33).

Class name Attributes Comment
Action type ---

Activity • Instructions
• Auditing requirements

App execution ---

Attribute • Data type
• Permission rules

Permission rules should be described through
attributes. The for resource relation is not needed in
this case, since it is implicitly covered by the
attribute.

Business entity • Business capabilities
• Contact information

Business capabilities are described as tables, since
their direct reuse is very limited. A capability (i.e.
row in the table) should be simplified to contain: a)
the Value (provided value relation without quantity),
b) the price per unit (replaces necessary
compensation), c) the time to delivery (replaces
provided value of delivery speed), d) the maximum
quantity and e) the location where it can be
provided (provided at relation)
Also the Business entity access is described directly
through its attributes in the Business entity.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 69

Class name Attributes Comment

Business model ---

Can be a model type. It is also recommended to
contain the Business entities, Business roles and
Market segments that are used through the Value
interfaces in the Business model.

Business process --- Can be a model type.

Business role • Business capabilities

Business capabilities are described as tables, since
their direct reuse is very limited. A capability (i.e.
row in the table) should be simplified to contain: a)
the Value (provided value relation without quantity),
b) the price per unit (replaces necessary
compensation), c) the time to delivery (replaces
provided value of delivery speed), d) the maximum
quantity and e) the location where it can be
provided (provided at relation)

Characteristic ---

Constant • Value The Value type and Set type can be determined
based on the provided value.

Decision • Inclusion type
• Question

Dependency control • Inclusion type
End • Intention type
End stimulus ---

Entity • Permission rules

Permission rules should be described through
attributes. The for resource relation is not needed in
this case, since it is implicitly covered by the
attribute.

Entry • Start type

Evaluation action --- Use Action types and instance of relation instead of
an attribute for the types.

Evaluation process --- Can be a model type
Event ---
Exchange control • Inclusion type
Function execution • Source type
Halt ---

Information access
• Medium type
• Data source type
• Performed operations

Information instance • Permission rules

Permission rules should be described through
attributes. The for resource relation is not needed in
this case, since it is implicitly covered by the
attribute.

Information template
• Permission rules
• Information type
• Access modifiers

Permission rules should be described through
attributes. The for resource relation is not needed in
this case, since it is implicitly covered by the
attribute.

Interaction ---

Interaction component • Awareness type
• Content multiplication

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 70

Class name Attributes Comment
type
• Intended for device

Interaction flow --- Can be a model type.
Knowledge ---

KPI • Function
• Last values

The Value type and Set type can be determined
based on the used function and operands.
Last values should be used to store the last value/s
hat has/have been calculated.

Location
• Type
• Dependency type
• Area

Location control • Inclusion type

Market segment • Targeted
• Share

Mobile app • Permission rules
• Download link

Permission rules should be described through
attributes. The for resource relation is not needed in
this case, since it is implicitly covered by the
attribute.

Mobile app capability ---

Mobile app template • Permission rules

Permission rules should be described through
attributes. The for resource relation is not needed in
this case, since it is implicitly covered by the
attribute.

Navigation model --- Can be a model type.

Note --- A class that can be used to leave comments or
graphics on the modelling canvas.

Notification exchange --- Can be a model type.
Notification received ---
Orchestration --- Can be a model type.

Organisation unit
• Type
• Function
• Preferred occupation

Parallelism ---
Path split • Inclusion type
Participant collaboration --- Can be a model type.
Performer • Availability

Point of interaction
• Interaction type
• Awareness type
• Data type

Relation • Permission rules

Permission rules should be described through
attributes. The for resource relation is not needed in
this case, since it is implicitly covered by the
attribute.

Requirements process --- Can be a model type.
Role • Preferred occupation
Skill ---
Start • Intention type

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 71

Class name Attributes Comment
Start stimulus • Occurrences

Swimlane ---
A class that can be used to visually structure models
for human readers. It should not be used beyond
that.

Synchronisation • Inclusion type

Value
• Value type
• Excitement type
• Axiologic type

Value exchange ---
Value exchange flow --- Can be a model type.
Value interface ---
Value set • Inclusion type

Variable • Function
• Last values

The Value type and Set type can be determined
based on the used function and operands.
Last values should be used to store the last value/s
that has/have been calculated.

Table 35: Recommended classes and attributes

Relation name Attributes Comment
accessed through ---

achieves green if ---
The relation itself covers which level is achieved. The
target is the condition for achieving the level and
should be a Variable.

achieves yellow if ---
The relation itself covers which level is achieved. The
target is the condition for achieving the level and
should be a Variable.

annihilates ---
basis for ---
configuration of ---

contains • Separable Note that using the Separable attribute might not
always be applicable.

depends on • Fraction
designed for ---
detailed by ---
evaluates ---
exchanged value • Quantity

exchanges value with • Outgoing valuation
• Incoming valuation

execute on • Query
executes ---

followed by • Conditions
• Probability

for subject ---

The source should also allow requires relations, to
allow stating access requirements. Description can
be used to specify additional human readable
constraints.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 72

Relation name Attributes Comment

for action type ---

The source should also allow requires relations, to
allow stating access requirements. Description can
be used to specify additional human readable
constraints.

fulfils ---
fulfils skill/knowledge • Level of aptitude

has business location --- Source should be Business entity instead of Business
entity access.

has capability ---
has chief ---
has initiator ---
has manager ---
has message ---

has note --- Source can be any element and the target should be
a Note.

has operand • Order number
has part ---
has performer ---
has responsible ---
has skill/knowledge • Level of aptitude

has value • Separable
• Quantity

impacts • Impact type
implemented by ---
implies --- It is the subtype of mandates value
influences • Quantity
instance of ---
interface part of ---
involved participant ---
is for ---
justifies ---
notifies ---
owned by ---
performed on ---
prohibits --- It is the subtype of mandates value
relates • Role

• Cardinality

requires

In terms of access requirements, a description can
be used to specify additional human readable
constraints on the resource. The for resource relation
is not needed in this case, since it is implicitly
covered by this one.

specialisation of ---
specialised value of ---
strictly requires --- See comment of requires
supported by --- See comment of requires
switches to ---

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 73

Relation name Attributes Comment
triggers • Conditions

• Available navigation
patterns

with partner ---

Table 36: Recommended relations and attributes

Some things have been changed in the proposed classes/relations/attributes compared to the concepts
described in sections 2.3 to 2.5. Those changes are introduced to reduce the modelling effort and improve
the modelling experience. Specifically they are:
 Added a Note and Swimlane, which allow to comment and structure models for human readers,

without changing the meaning of the models. Also a relation has note to attach the note to objects.
They can be used anywhere.

 Business capabilities are simplified to concentrate on “what” and “how much of it” is provided
“how fast” for “what cost” and available at “which locations” through an attributes of the Business
entity and Business role.

 Business entity access is handled through attributes instead of dedicated objects.
 Permission rules are also handled through complex attributes instead of using objects that would

be drawn on a canvas. This also allows to omit the for resource relation, since they are part of the
resource they are for.

 Access requirements are described through the requires relation (and its subtypes), which follows
closely the structure of the Permission rule.

 Value type and Set type from the concepts of the KPI structure group can be determined by using
the functions and operands (or the value for constants).

 The Levels have been simplified to plain “Red”, “Yellow” and “Green”. The relations achieves green
if and achieves yellow if are used to indicate which variables have to be true to achieve a certain
level, with “Green” overriding “Yellow” (i.e. if both “Green” and “Yellow” are true, then “Green” is
achieved). If none of the two relations is true then the KPI is assumed to be on “Red” Level.

 Participant involvement and involved participant are not an explicit class/relation. Instead they
should be handled like Representative elements from the Procedural Aspect (i.e. hide the specifics
of their creation and change from the user if possible).

 The type of an Evaluation action is denoted using the instance of relation and Action types, instead
of using an attribute.

3.2 Proposed Notation Guidelines
It is recommended to use notations that are intuitive and follow a coherent style, to facilitate the creation
of models by a user. Following are some general guidelines for notations that can be used, assuming a two
dimensional space based on graphical notations (“modelling on a canvas”) is used:

1) Motivator
a) Use the shapes and/or colours to indicate the types of values

2) Participants
a) All templates should use the same colour (e.g. green)
b) All capabilities should use the same colour (e.g. orange)
c) All instances should use the same colour (e.g. blue)
d) The shape should indicate the types of templates and instances and should be the same for both

with minor differences (e.g. a star for both Performer [Instance] and Role [Template])
e) Decomposition relations should use black lines

i) Solid if inseparable or unknown
ii) Dashed if separable

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 74

f) Specialisation relations should be blue lines
3) Procedural

a) Actions should use one colour and Events another (e.g. green for Actions, orange for Events)
b) followed by relations should use solid black lines
c) Decomposition between a Process and its contents should be denoted by drawing the contents

inside the Process.
i) It is recommended to omit the visualisation of the decomposition between an Action and its

Processes as arrows. It should be available through different means (e.g. attribute in a
notebook)

Table 37 shows some notations that can be used for the visualisation of the classes described in section 3.1.
If a class/relation is missing, then it is recommended to not directly show it as an object/arrow on a canvas
and instead handle its use through repositories, lists, queries, notebooks etc. Even the relations that have a
notation specified should be manageable through means other than the modelling canvas if possible. Also
many of the different decomposition relations (i.e. specialisations of contains) can be shown by the smaller
part being in the larger part. It is additionally recommended to make use of the metamodelling platforms
specific capabilities (e.g. hyperlinks, dynamic notations etc.) to enhance the user friendliness.

Class/Relation name Proposed notation Comments
Classes

Activity

The responsible role could be shown in the
middle. Other icons can be used to
visualise additional relations or attributes
(e.g. assigned resource types).

App execution

Attribute

Business entity

Business role

Characteristic

Constant

The value can be shown in the middle.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 75

Class/Relation name Proposed notation Comments

Decision

The middle can be used to show the
inclusion type.

Dependency control

The shape should indicate the inclusion
type. The notation shows two
recommended shapes (round: AND,
diamond: XOR).

End

End stimulus

Entity

Entry

Evaluation action

Colours can be used to indicate the type
(e.g. data collection, transmission or
processing)

Event

Exchange control

The shape should indicate the inclusion
type. The notation shows two
recommended shapes (round: AND,
diamond: XOR).

Function execution

Halt

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 76

Class/Relation name Proposed notation Comments

Information access

The different types can be visualised in the
middle.
The performed operations can be shown
at the top right of the element.

Information instance

Information template

Interaction

Interaction component

Decomposition can be shown by putting
the parts into the Interaction component.
In some cases it can be useful to hide the
name.

KPI

The function can be shown at the top right
(as a simple icon/character like Σ for sum).
The arrow in the middle (here green) can
show the achieved level (green, yellow or
red).

Location

The type of location can be visualised in
the bubble.

Location control

The middle part should indicate the
inclusion type.

Market segment

An icon can be used to indicate if it is
targeted or not.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 77

Class/Relation name Proposed notation Comments

Mobile app

Mobile app capability

Mobile app template

Note

Notification received

Organisation unit

Different colours (or other changes to the
notation) can be used to visualise the type.

Parallelism

Path split

The middle can be used to show the
inclusion type.

Performer

Point of interaction

The icons and colours can change
depending on the different types.
Decomposition can be shown by putting
the Point of interaction into an Interaction
component.
In some cases it can be useful to hide the
name.

Relation

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 78

Class/Relation name Proposed notation Comments

Role

Start

Start stimulus

Swimlane

The notation shows a horizontal version. A
vertical version can also be provided for a
different modelling direction.

Synchronisation

The middle should be used to show the
inclusion type.

Value

Use colours to indicate the different types.

Value exchange

Several incoming and outgoing values can
be shown in the middle (only one for each
is shown in the example)

Value interface

The interface part of relation to the
Business entity / Business role / Market
segment can be denoted by putting the
Value interface inside the entity or on its
border.

Value set

The middle part should indicate the
inclusion type.

Variable

The function can be shown at the top right
(as a simple icon/character like Σ for sum).
The Value type and Set type can be shown
in the middle (where the “.” Is)

Relations
accessed through

configuration of

contains
Use a dashed line for separable contains
relations.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 79

Class/Relation name Proposed notation Comments
depends on The Fraction can be shown in the middle.

exchanges value with

The name of the exchanged Value can be
shown in the middle.

execute on

followed by
The Conditions can be shown in the
middle.

fulfils

has capability

has manager

has note

has operand
The Order number can be shown in the
middle.

has value

notifies

The name of the message (has message
relation) can be shown in the middle.

relates

specialisation of

switches to

triggers

Allowed navigation patterns can be shown
in the middle.

Table 37: Proposed notations for classes

In addition some classes can have new attributes for pictures or logos which can be visualised in the
notation. For example a logo could be provided for a Business entity, which is then shown next to the
proposed notation or completely replaces it, in order to improve identifying business entities. Similar
approaches can be used for Values, Market segments, Performers, Physical locations, Mobile apps, Points of
interaction and Interaction components.
Furthermore, alternative notations (here called concrete notations) for Points of interactions and
Interaction components can be provided, which follow a visualisation style that is similar to how they would
look on a mobile device. Those can then be used to create simple mockups in addition to describing the
structure of a mobile app. Some examples for Points of interactions together with their mapping on the
different types can be found in Table 38. In addition to considering the sub-types and data type of the Point
of interaction, the content multiplication type of the enclosing Interaction component has to be regarded as
well when choosing a concrete notation. If it is decided to provide such alternative depictions, then the
implementer should further develop concrete notations depending on how visually suggestive the models
should be. Depending on how extensive the visualisation capabilities should be additional attributes for
controlling the notation might be needed.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 80

Type Proposed notation Comments
Non-repeatable readable
text

Non-repeatable interactive
text

Repeatable readable text

This is a list without any
interaction.

Repeatable interactive text

This is a list where the user can
select one or several items.

Non-repeatable readable
boolean

Non-repeatable interactive
boolean

Repeatable readable
boolean

These are several selected
elements without any user
interaction.

Repeatable interactive
boolean

These are several elements which
the user can select to turn on or
off.

Readable picture

The notation can show an example
picture, preferably one that the
user can set.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 81

Type Proposed notation Comments

Interactive picture

The notation can show an example
picture, preferably one that the
user can set.

Interactive event

Technically a button.

Table 38: Examples of alternative notations for Points of interaction

The following figures show example mockups depicting in a notational manner the groups described in
section 2.6. A mockup for the Requirements process group is omitted, since from a notational perspective it
would look rather similar to the one of the Business process group, the envisioned differences being in
granularity and semantics (activities are characterised by their relations to various types of participants). A
notational distinction can be made for usability purposes, by including in the activity pictogram visual cues
indicating what types of assets have been assigned and/or indicating hyperlinks for navigating to the
related participant models.
Figure 9 depicts an example for a value structure where a shirt product is decomposed and shows its
variability options (which can potentially become customisation options exposed to the end-customer). In
the example, the product can have an optional embroidery component, and has sleeve length and colour as
customisation options. The product is specialised in two configurations: a) a plain shirt, which has all the
features of the root shirt, but explicitly prohibits the optional embroidery; b) an embroidered shirt that
explicitly prohibits the black colour option but requires the optional embroidery. Warranty and eco-
friendliness are shown as abstract features on which the modeller decides to compete on the market.

Figure 9: Example mockup for the Value structure group

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 82

Figure 10 depicts a decomposition of the 50+ (aged) market segment in a price-sensitive sub-segment and a
100+ sub-segment. For each segment, its key characteristics are assigned. These have to be considered
when defining the features of the value structure.

Figure 10: Example mockup for the Market structure group

Figure 11 describes in a colour coded manner business entities (e.g. “SewInc.”) and business roles that they
can fulfil (e.g. Sewing).

Figure 11: Example mockup for the Business structure group

Figure 12 depicts a decomposition of physical locations (characterising, for example, business entities) and
digital locations (webpage URLs or endpoints for data access).

Figure 12: Example mockup for the Location structure

Figure 13 depicts a value exchange process that complements the value exchanges described from a
collaboration viewpoint in Figure 14 (where order is not captured, with the exception of initiation and
finalisation). The example has in its centre a company that targets the Wealthy market segment (linked to a

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 83

model like Figure 10) with Shirt products whose creation involves a Textile producer (taking money as
input) and a Shirt sewer (taking money and textile as input) – both linked to business roles or entities
depicting Figure 11.

Figure 13 Example mockup for the Value exchange flow group

Figure 14: Example mockup for the Business model group

 Figure 15 is an extension of an eco-system (like the one depicted in Figure 11) at enterprise level,
hence describing organisation decomposition in departments and performers (including visual cues for
managers). Again, colour coding enables the distinction between concrete instances (to be used, for
example, in an as-is model) and roles (from a role hierarchy), with the fulfilment relation linking them.

 Figure 15: Example mockup for the Enterprise structure group

Figure 16 depicts a cycle time incident handling process with role assignments (from a model like the one
depicted in Figure 15), where the transition conditions outgoing from the decision “Cycle time OK?” are
represented as outcome events with the goal of benefiting from reuse of events. For example, if two
different process model describe the same process with different granularity (e.g. a business process model

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 84

and a requirements-oriented process model), applying the same events for both of them would create
common “checkpoints” highlighting the commonality between the two models and enabling additional
model queries. Event reuse is also aimed to be applied in event handling, when the process start in one
model (the incident handling process) is the same object as an event from another model (main process).

Figure 16: Example mockup for the Business process group

 Figure 17 complements the process from Figure 16 with a collaborative view on the involved
roles. Notice the relative similarity to how the business model (Figure 14) and the value exchange process
(Figure 14) complement each other in giving a complete picture of both the procedural and participant
interaction facets.

 Figure 17: Example mockup for the Participant collaboration group

The next figures take participants descriptions down to the level of assets. Figure 18 covers the mobile app
requirements on several levels of detail: in the middle, an app template hierarchy with mapped capabilities
and an identified instance (Skype) is depicted. On the left side, a particular app template is structured in its

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 85

interaction components according to the POI taxonomy proposed by the work at hand. On the right side, an
orchestration is explicitly described by comprising several apps.

Figure 18: Example mockup for the Mobile support structure group

Figure 19 describes a required information space, with several types of modelling objects: information
resources (e.g. Orders), elements of an entity-relationship diagram detailing what data entities and which
of their properties are covered by an information resource (e.g. the Person entity, the Name attribute) and
what access means are provided for each information resource (further linked to endpoint locations from
models like the one depicted in Figure 12). An XOR location control indicator shows that “Access 5” is
provided at multiple locations (e.g. a query supported by multiple endpoints).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 86

Figure 19: Example mockup for the Information space group

Figure 20 depicts an interaction process whose steps are either human-app interactions or app functions
reacting to interaction steps. Interaction elements (like those on the left-side of Figure 18) and information
assets (like those from Figure 19) can be linked to the elements of such a process.

Figure 20: Example mockup for the Interaction flow group

Figure 21 describes a navigational map considering the app components and their triggers involved in one
or several interaction flows.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 87

Figure 21: Example mockup for the Navigation map group

Figure 22 describes an orchestration model indicating the app usage flow derived from a business process
with app requirements. It has visual cues for the initiation of a notification (last use of Issue management)
and for a dependency on a notification (Repairdocs received).

Figure 22: Example mockup for the Orchestration group

 Figure 23 depicts notification dependencies between different app ensembles, hence describing
app interactions in a similar fashion to the role interactions from Figure 17.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 88

 Figure 23: Example mockup for the Notification exchange group

Figure 24 depicts the structure of two KPIs. On the right side, the Mean time to repair KPI is computed as
the division between a sum and a count of repair times (with visual cues indicating the operation and the
digit 1 indicating the first operand in the division). On the left side, two conditions are defined for this KPI:
the green condition obtained if the KPI has a value lower than 3, the yellow condition if the value is lower
than 5.

Figure 24: Example mockup for the KPI structure group

Figure 25 describes an evaluation process with visual cues suggesting the typing of the process tasks (data
collection steps, data transmission steps and calculation steps linked to models like those depicted in Figure
24).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 89

Figure 25: Example mockup for the Evaluation process group

3.3 Recommended approaches for Mechanism and Algorithm implementations
This chapter provides some recommendations on how the functionalities described in section 2.7 can be
implemented. Some of them however pose addition restrictions on the input that is used (e.g. the
simulation does not allow the use of the OR-inclusion type on any path). Again the descriptions here are
propositions and can be improved upon (e.g. add caching to increase performance) or other approaches
and designs can be chosen by the implementers (because of e.g. restrictions of the chosen architecture, to
lift some of the restrictions of the proposed approaches etc.).

3.3.1 Recommended approach for Determine Instances/Templates for required Capabilities
This functionality determines instances or templates for a set of required capabilities. Differently put it can
be thought of as finding a fitting instance or template to substitute a set of requirements. Here the general
approach on how to find the desired elements is in the focus. The details of the comparison of capabilities,
the data structure that should be used as well as any details on the user interface and presentation of
inputs and outputs are up to the implementer. The here presented approach poses some requirements
that must be fulfilled:

 Access to the necessary model data of the participants is available.
 Only capabilities are used that the implementation knows how to interpret and compare.

The procedure for finding the instances and templates takes as an input both the required capabilities
(called Required Capabilities) and the desired type of element (called Desired Type, e.g. Performer, Role,
Business entity etc.).

1. Get all eligible elements that are of Desired Type as Possible Candidates
2. For each of those elements as Candidate

2.1. For each of Required Capabilities as Requirement
2.1.1. If Candidate does not fulfil Requirement

2.1.1.1. Remove Candidate from Possible Candidates
3. Return Possible Candidates

The most complicated part of this procedure is checking if the candidate fulfils the requirement. For this
one of the available capabilities has to cover the required one. This check however depends on the type of
used capability. For examples Characteristics can simply be checked using their identifications, while Skills
and Knowledge should be checked for both their identification (i.e. that both talk about the same
skill/knowledge) and also the level (i.e. the level of the available skill has to be the same or higher as the
required level). For more complex capabilities like Business capabilities, which contain the provided value,
the maximum quantity and the price per unit among other things, it is recommended to split them up and
compare the smaller parts accordingly (e.g. available price is smaller or equal than required price, available
quantity is larger or equal than required quantity etc.).
Additionally, since both capabilities as well as the parts that they can contain can be described through a
hierarchy, this hierarchy has to be considered when comparing them. For such a comparison, the available

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 90

capability has to be either the same as either the required one or a more general capability of the required
one. A simple way of determining this is to put the required capability and all the capabilities it specialises
(including transitively) in a list and then check if the available capability is in that list. For efficiency those
lists could be determined and stored before step 1. A more sophisticated approach would be to consider
the structure of specialisation as a graph and see if the available capability (target) can be reached from the
required capability (source) using one of many different algorithms (depth-first search, Dijkstra etc.)
An alternative approach for finding elements for a set of required capabilities is to use queries. An example
for a query that finds Performers for a Role (i.e. the Role describes the required capabilities) and is executed
on model data serialised as Linked Data can be found in the appendix (section 6.1). However, for different
cases the query has to be adapted depending on the types of elements and capabilities as well as the
structure of the serialisation. Also it does not consider the capability hierarchy.
3.3.2 Recommended approach for Derivation of Participant collaboration
This functionality supports the user with the creation of a Participant collaboration out of a procedural
model (simply called process). The approach chosen here derives an initial Participant collaboration out of a
process, which can further be enhanced by a user. The data structure that should be used as well as any
details on the user interface and presentation of inputs and outputs are up to the implementer. The
approach poses some requirements that must be fulfilled:

 The procedural model uses the requires (or one of its specialisations) relation to indicate what
participant is participating.

 Access to the model data about the necessary elements is available.
 Further decomposition of elements is ignored.

The approach for deriving the participant collaboration uses a process as an input and also the desired
participant type for the collaboration. Additionally it uses a set Participants to temporarily store several
participants.

1. Create a participant collaboration and create the is for relation to the corresponding action
2. For each requires relation where the target is of the desired participant type

2.1. Add the target of the requires relation to the participant collaboration
3. For each element as Procedural that is the source of a requires relation to an element of the desired

participant type
3.1. Get all requires relations where the target is of the desired participant type and the source is

Procedural
3.2. For each of those relations

3.2.1. Add the target of the relation to Participants
3.3. Create switches to relations between all elements in Participants (in both directions)
3.4. Follow the path(s) going out of Procedural (use followed by relations) until

a) reach a procedural element that is the source of a requires relation, where the target of the
relation is of the desired participant type; the procedural element will be called Followed Element
b) cannot go any further (because an end is reached or a loop is detected).

3.5. For each case a) (can happen multiple times if several paths are found)
3.5.1. Get all requires relations where the target is of the desired participant type and the source is

Followed Element
3.5.1.1. For each of those relations as Requires

3.5.1.1.1. Create switches to relations from all of the elements in Participant to the
target of Requires

4. For each Initiation event in the process as Initiation
4.1. Create a Start in the participant collaboration
4.2. Follow the path(s) going out of Initiation until a procedural element that is the source of a requires

relation, where the target of the relation is of the desired participant type is reached
4.3. For each of those elements found as Followed Element

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 91

4.3.1. Create a switches to relation from the created Start to Followed Element
5. For each Termination event in the process as Termination

5.1. Create an End in the participant collaboration
5.2. Follow the path(s) in reverse coming in Termination until a procedural element that is the source

of a requires relation, where the target of the relation is of the desired participant type is reached
5.3. For each of those elements found as Followed Element

5.3.1. Create a switches to relation from Followed Element to the created End

When creating a relation between two elements, creating duplicates should be avoided (i.e. don’t create a
relation of a certain type between the source and the target if another relation of the same type, with the
same source and the same target already exists). Also avoid creating relations where the source and the
target are the same element. In general the 5 main steps from above can be simplified as:
1. Create empty participant collaboration
2. Put participant involvements in participant collaboration
3. Connect participant involvements based on process
4. and 5. Add possible Start and End elements based on process and connect them
Any step that uses “Follow the path(s)” is meant to find the next element in the process sequence that has
some information that is necessary. This can lead to several elements, since control elements (e.g.
Decisions, Parallelisms etc.) can be along the path. It can be realised through a depth-first search with the
corresponding termination rules.

3.3.3 Recommended approach for Interaction stepper
This functionality showcases the interactions with a mobile device for a certain process. The approach
described here focuses on how procedural models can be used for that, leaving details about the data
structure, the user interface and the presentation of inputs and outputs to the implementer. However, an
example for how the interaction stepper could look is shown in Figure 26. The upper part is showing the
process or processes that are currently stepped through, with the current Action highlighted, while the
bottom part shows some of the properties of the current Action. The right part shows the mockup of the
screen that would be seen on the mobile device with the parts highlighted that are used at the current
Action. The screen mockup should be based on the description through the Points of interaction and
Interaction components.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 92

Figure 26: Example mockup for the Interaction stepper

The here presented approach poses some requirements that must be fulfilled:

 Only detailing Actions through Interaction flows (i.e. decomposition) is considered. Other
decomposition of Actions into processes is ignored.

 Only Split-Control elements can have multiple outgoing followed by relations.
 Only Control elements of AND-/XOR-inclusion type are allowed.
 Every Split-Control element of AND-inclusion type must have one corresponding Merge-Control

element of AND-inclusion type. Also all paths out of the AND-Split must be led together in the same
AND-Merge.

 All outgoing followed by relations of a Split-Control element of XOR-inclusion type must have a
transition condition specified.

Note that the here described approach can be modified to also cover different cases. For example instead
of letting a user choose the path of a decision (XOR-Split), a predefined list of choices can be used, forcing
the viewer on a specific path. Such and other extensions are however left open to the implementer.

The focus of this part lays in the approach of stepping through a process.. For this a function is used, that
takes as an input the current node, steps to the next node, displays information about this node and
updates the user interface appropriately. So the function should be called every time a “step” from the
current Action to the next should be taken10. The next nodes that should be visited are stored in an ordered
set (array) called “nodes to be parsed”. Therefore when starting the first time, the Initiation event should
be in that array. A user interface similar to the one shown in Figure 26 is assumed in this description.

1. Set the Current Node to the first element from “nodes to be parsed”
2. Mark the Current Node in GUI as visited
3. Remove first element from “nodes to be parsed” (i.e. remove the Current Node)
4. If the Current Node is an AND-Split

10 This can be triggered for example by the user pressing a button or in timed intervals to automatically “play” through
the process.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 93

4.1. Add nodes after the Current Node to beginning of “nodes to be parsed”
4.2. Add number of nodes after the Current Node to beginning of “opened paths”

5. If the Current Node is an XOR-Split
5.1. Ask which outgoing followed by relation to take (where the Current Node is the source of it)
5.2. Set the Current Node to target of the relation
5.3. If the Current Node is not an AND-Merge

5.3.1. Add the Current Node to beginning of “nodes to be parsed”
6. Else

6.1. Get the outgoing followed by relation (where the Current Node is the source of it)
6.2. Set the Current Node to the target of the relation

7. If “nodes to be parsed” does not contain the Current Node
7.1. If the Current Node is an AND-Merge

7.1.1. Get the first element from “opened paths” as index
7.1.2. Remove the first element from “opened paths” (i.e. remove index)
7.1.3. Add the Current Node to “nodes to be parsed” at position of index

7.2. Else
7.2.1. Add the Current Node to beginning of “nodes to be parsed”

8. Set Current Node to the first element from “nodes to be parsed”
9. Mark the Current Node in GUI as active
10. Update display of attributes
11. If the Current Node requires a Point of interaction or Interaction component

11.1. Highlight the Point of interaction / Interaction component in the mockup view
12. If the Current Node is further detailed by an Interaction flow

12.1. Add the Initiation event of the Interaction flow to beginning of “nodes to be parsed”
12.2. Change showed processes in GUI accordingly.

3.3.4 Recommended approach for Derivation of Orchestration
This functionality supports the user with the creation of an Orchestration out of a procedural model (simply
called process). The approach chosen here derives an initial Orchestration out of a process, which should
further be enhanced by a user. The data structure that should be used as well as any details on the user
interface and presentation of inputs and outputs are up to the implementer. The approach poses some
requirements that must be fulfilled:

 The procedural model uses the requires relation to indicate what resource should be used in the
orchestration.

 Each Action should have only one performer and require one element of the desired resource types
(e.g. only one Mobile app or Mobile app template).

 Access to the model data about the necessary elements is available.
 Further decomposition of elements is ignored.

The approach for deriving the orchestration uses a process as an input. Additionally to a set called
“Mapping” that stores a pair containing the procedural element from the process and its corresponding
resource11 and a set called “Processed” to automatically add Entries in the orchestration.

1. For each distinct performer used in the process
1.1. Create an orchestration and assign the performer (using the designed for relation)

2. For each element in the process that has a requires relation to an element of the desired resource type
2.1. Get the performer of the element
2.2. Get the orchestration for the performer
2.3. Create an App execution in the orchestration and link it through executes to the resource
2.4. Put the procedural element and the created App execution in Mapping

11 This is used to store which resource in the orchestration represents which action from the process and vice versa.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 94

3. For each orchestration as Orchestration1
3.1. For each App execution in the orchestration as Execution1

3.1.1. Get the corresponding procedural element from Mapping as Procedural1
3.1.2. Follow the path(s) going out of Procedural1 (use followed by relations) until

a) reach a procedural element that is contained in Mapping or
b) cannot go any further (because an end is reached or a loop is detected).

3.1.3. For each case a) (can happen multiple times if several paths are found)
3.1.3.1. Get the App execution corresponding to the found procedural element from

Mapping as Execution2
3.1.3.2. If Execution2 is part of Orchestration1

3.1.3.2.1. Create a followed by relations from Execution1 to Execution2
3.1.4. For each case b) (can happen multiple times if several paths are found)

3.1.4.1. Create a Halt in Orchestration1
3.1.4.2. Create a followed by relation from Execution1 to the Halt

4. For each Initiation event in the process
4.1. Follow the path(s) going out of it and for each element on that path as Procedural

4.1.1. If Procedural is in Mapping
4.1.1.1. Get the performer of Procedural
4.1.1.2. If Processed does not contain the performer

4.1.1.2.1. Put the performer in Processed
4.1.1.2.2. Get for Procedural1 the corresponding App execution as Execution
4.1.1.2.3. Get the orchestration which contains Execution
4.1.1.2.4. Add an Entry to the orchestration
4.1.1.2.5. Create a followed by relation from the Entry to Execution

When creating a relation between two elements, creating duplicates should be avoided (i.e. don’t create a
relation of a certain type between the source and the target if another relation of the same type, with the
same source and the same target already exists). Also avoid creating relations where the source and the
target are the same element. In general the 4 main steps from above can be simplified as:
1. Create empty orchestrations
2. Put App executions in orchestrations and store mappings
3. Connect App executions in orchestrations based on process
4. Add possible Entry elements based on process and connect them
This approach creates one orchestration for each distinct performer that is used in a process. If one
complete orchestration independent of the performers should be created, then instead of performing step
1, simply create one orchestration and use it for every performer. Also step 4 can then be simplified to look
on a path until the first element that is contained in Mapping is found. Any step that uses “Follow the
path(s)” is meant to find the next element in the process sequence that has some information that is
necessary. This can lead to several elements, since control elements (e.g. Decisions, Parallelisms etc.) can
be along the path. It can be realised through a depth-first search with the corresponding termination rules
(in step 4.1 a branch should continue until it can’t go no further or a loop is detected). The requirement for
allowing only one resource can be removed, by sequencing the assigned resources of one Action in an
arbitrary but steady order12 and correctly connecting them to the predecessors and successors of the
Action.
An alternative approach based on transformation rules can be taken from the description in the Appendix
of D3.1.1. It has however different requirements and covers less than the approach presented above.

12 “Arbitrary but steady order” means that the order is generally not important, but creating it twice for the same
Action it should be both times the same. This can be achieved for example by sorting the resources based on their
internal id.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 95

3.3.5 Recommended approach for Gathering access requirements
This functionality supports the user with the creation of permission rules. The here presented approach is a
very simple one, where the access requirements are simply copied as permission rules. The data structure
that should be used as well as any details on the user interface and presentation of inputs and outputs are
up to the implementer. It does however pose some requirements that must be fulfilled:

 The general structure of the described access requirements and permission rules is the same:
o They should both cover the subject, the action and the resource.

 A requires relation has at most one for subject relation.
 Access to the permission rules, the requires relations, the participant structure and the action type

structure (i.e. the necessary model data) is available.
The approach here assumes that the input is the process and its access requirements. The procedure for
this is as follows:

1. Get all the requires relations that have a source in the selected procedural model.
2. For each such relations referred to as Requirement

2.1. If Requirement is not already covered by a rule
2.1.1. Get the assigned subjects of Requirement as Requirement Performers
2.1.2. Get the assigned action types of the Requirement as Requirement Actions
2.1.3. Get the target of Requirement as Resource
2.1.4. For each performer in Requirement Performers as Subject

2.1.4.1. Create a new permission rule for Resource where the subject is Subject and the
actions are all of Requirement Actions

2.1.4.2. If possible mark the created permission rule as “to be revised”
In order to check if a requirement is covered by a permission rule, two approaches are possible:

1. Use the basis for relation to see if a rule already is based on a requirement
2. Perform a check if a rule exists that already covers the requirement. This can be performed by following

the steps 2.1 to 2.6 from section 3.3.6.

If neither of those approaches is feasible, then consider that all requirements are not covered by any rule.
For step 2.1.1, the subjects of a requires relation can be determined either through the for subject relation
or if one is not available then the performers assigned to the source of the requires relation should be used.

After the permission rules have been created based on the access requirements, a cleanup can be
performed. Such a cleanup should look if any of the permission rules is already covered by another one.
This check can look similar to the steps 2.1 to 2.6 from section 3.3.6. However, note that it has to be
performed in both directions (i.e. check the first rule against the second and vice-versa).

3.3.6 Recommended approach for Access requirement coverage check
This functionality focuses on finding and checking access requirements against the available permission
rules. The description here focuses on how this can be achieved and what has to be watched out for. The
data structure that should be used as well as any details on the user interface and presentation of inputs
and outputs are up to the implementer. The here presented approach however poses some requirements
that must be fulfilled:

 The general structure of the described access requirements and permission rules is the same:
o They should both cover the subject, the action and the resource.

 A requires relation has at most one for subject relation.
 Access to the permission rules, the requires relations, the participant structure and the action type

structure (i.e. the necessary model data) is available.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 96

The approach considers being performed for one procedural model, it can however be repeated several
times if the check should be performed for several such models. It returns a list of requires relations, which
describe the access requirements, that do not fit into any of the available permission rules.

1. Get all the requires relations that have a source in the selected procedural model.
2. For each such relations referred to as Requirement

2.1. Get the assigned subjects of Requirement
2.2. Gather all the types and super-types of the performers (using instance of and specialisation of

relations) and store them in Requirement Subjects
2.3. Get the assigned action types of Requirement
2.4. Gather all the types and super-types of the action (using instance of and specialisation of

relations) and store them in Requirement Actions
2.5. Get the assigned target (the resource) of the Requirement
2.6. For each permission rule of the target as Rule

2.6.1. If the subject of Rule is contained in Requirement Subjects and the action of Rule is contained
in Requirement Actions

2.6.1.1. Note that the access requirement is fulfilled
2.6.1.2. Break out of the 2.6 for loop

2.7. If the access requirement is not noted as fulfilled
2.7.1. Add it to the result

3. Return the result

With this approach, if more than one performer is assigned to an Action, it is enough if one of the assigned
performers has access to the required resource. For step 4.1, the subjects of a requires relation can be
determined either through the for subject relation or if one is not available then the performers assigned to
the source of the requires relation. The steps 2.2 and 2.4 both should return the templates (if an instance is
used, then it is determined through the instance of relation) and further find all the more generic templates
(by following the direction of the specialisation of relations). The latter part can be achieved by using a
depth-first or breadth-first search. The result contains requires relations, because they cover the most
interesting information of access requirements that are not fulfilled. Their source indicates during which
Procedural element the access requirement is not fulfilled and their target indicates what resource cannot
be properly accessed.
3.3.7 Recommended approach for Calculation of KPIs/Variables
This functionality deals with calculating values for KPIs and Variables based on their description in the
models. Most of the details are handled by the mathematical rules, however an additional description can
be found in section 2.6.6 and Table 34. The data structure that should be used as well as any details on the
user interface and presentation of inputs and outputs are up to the implementer. The only additional
requirement is that a proper structure with functions that can be understood by the implementations is
used and available. A possible approach to calculate a certain variable is to use a function that takes as an
input an element (i.e. a KPI, Variable or Constant) either returns its value, if it is known or loaded from an
outside source, or dynamically calculates its value based on the used operation (addition, subtraction, sum
etc.) and the operands. The function itself should again be used to get the value of the operands, leading to
a recursive calculation of the final value. To find out the level of a KPI the relations achieves green if and
achieves yellow if should be used, which target is a Variable, that should represent a boolean value
indicating if said level is achieved.

3.3.8 Recommended approach for Simulation of Procedural models
This functionality focuses on “running” described procedural models in order to simulate them. Therefore
the approach will focus on how procedural models on the level of Aspect-specific concepts can be
simulated. The data structure that should be used as well as any details on the user interface and
presentation of inputs and outputs are up to the implementer. The here presented approach however
poses some requirements on the process that must be fulfilled:

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 97

 Further descriptions of Actions through other processes are ignored during simulation. Only the
selected Process is simulated.

 Only Split-Control elements can have multiple outgoing followed by relations.
 Only Control elements of AND-/XOR-inclusion type are allowed.
 Every Split-Control element of AND-inclusion type must have one corresponding Merge-Control

element of AND-inclusion type. Also all paths out of the AND-Split must be led together in the same
AND-Merge.

 All outgoing followed by relations of a Split-Control element of XOR-inclusion type must have a
transition probability specified.

Note that the here described approach can be modified to also cover different cases. For example instead
of choosing a path after a decision (XOR-Split) at random, a predefined list of choices can be used to utilise
the simulation to aggregate certain vales on a specific path. Also different functions can be used for
different attribute types. Such extensions are however left open to the implementer.

In this part the approach of walking through one simulation run is in the centre. For this a recursive
function that takes as input a node (current node), the current path and the current probability is used.
One additional variable (i.e. parallelism end) is outside of the function, because it is needed throughout
different recursion runs.

1. Until the end is reached (the current node has no more outgoing followed by relations)
1.1. Add the Current Node to the Path
1.2. Add desired attributes and their values to the Path
1.3. If the Current Node is an XOR-Split

1.3.1. Choose one outgoing followed by relation (where the Current Node is the source of it) at
random based on their transition probabilities

1.3.2. Multiply the Path probability with the transition probability of the chosen relation
1.3.3. Set the Current Node to the target of the chosen relation

1.4. Else, if the Current Node is not an AND-Split
1.4.1. Get the outgoing followed by relation (where the Current Node is the source of it)
1.4.2. Set the Current Node to the target of the relation

1.5. If the Current Node is an AND-Merge
1.5.1. Set global Parallelism End to Current Node (so that the parent recursion knows where to

continue)
1.5.2. Return

1.6. Else, if the Current Node is an AND-Split
1.6.1. Add the Current Node to the Path
1.6.2. For each outgoing followed by relation (where the Current Node is the source of it)

1.6.2.1. Recursively call this function with: Current Node = the target of the relation, Path =
Path and Probability = Probability

1.6.3. Set the Current Node to global Parallelism End
2. Add the Current Node to the Path
3. Return the Path
The first time the function is started with the start node of the process, a probability of 1 and an empty
path object. The result is the path object that describes what sequence has been taken during the
simulation run, its probability based on the transition probabilities and the attribute values summed up
along the path. Such a sum can indicate for example the total costs for a certain path or the total time that
performers have to spend executing the path. Since the costs, wastes and durations are described through
influences relations to Values that also contain a quantity, those relations with the quantity should be used
in step 1.2 when adding the attributes and their values to the path.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 98

This simulation function can be run several times to find different paths (depending on probabilities and
number of runs), similar paths (according to sequence of elements) can then be merged and individual path
results as well as aggregated results for the whole process can be provided. Possible results for a process
based on several simulations are:
 The lowest value of a certain attribute in a path and the probability of that path
 The largest value of a certain attribute in a path and the probability of that path
 The average value of a certain attribute (based on path probabilities) and the standard deviation

3.3.9 Recommended approach for Business model evaluation
This functionality is similar to the previously described simulation. However instead of simulating one “run”
through a procedural model, it instead calculates the expected revenues and expenses of a Business model.
The data structure that should be used as well as any details on the user interface and presentation of
inputs and outputs are up to the implementer. The here presented approach focuses on describing how the
revenues and expenses can be determined. However, it poses some requirements that must be fulfilled:

 Properly described Business model, with all the elements for a certain business case.
 No infinite loops are present in the Business model.

In order to evaluate the Business model, an algorithm similar to a depth-first search13 can be used, with the
addition of keeping track and updating certain aspects that make out the result. The general idea is to start
such a “search” from each Start stimulus (i.e. for each Start stimulus a “search” is performed) and continue
it until no further processing is possible. Additionally, loops should be explored again instead of stopping a
branch. It should however stop searching a branch when the occurrences reach a value of 0. During such a
“search” the implementation should keep track of which exchanges value with relations are passed as well
as how often based on the occurrences. The formulas on how to calculate the occurrences after a Split-
Dependency control have been presented in Table 20. However, when encountering a Merge-Dependency
control a different approach should be taken:

 Merge with AND-inclusion type – Since it is a merge of several paths into one, it should be passed
only once. This means that the first time it is encountered, the exploration of the branch should
continue, with the occurrences adapted based on the fractions (see Table 20). If it is reached again
then the exploration of the branch should be stopped. This can be achieved by marking the Merge
elements once they have been passed the first time.

 Merge with XOR-inclusion type – Here the exploration of the branch should simply continue. The
summation of all incoming occurrences is not necessary, because of the way a deep-first search is
executed (i.e. each branching that leads to the Merge will pass it anyway resulting in a summation
at the end).

In the end the result of all the value exchanges with their occurrences can be aggregated based on the
Business entities and their Value interfaces. It could be presented as a table for each Business Entity
containing all the exchanged values with their amounts and valuations.
3.3.10 Recommended approach for Serialisation of models as Linked Data
This functionality can be considered an “Export” of data out of the tool. It can be achieved by either directly
serialising into Linked Data or using an already available export format that contains all the necessary data
and transform it. The here described approach omits the specific transformation details and focuses on
recommending a vocabulary in order to achieve interoperability between different modelling tools and
different application as well as to allow reuse of queries.
Table 39 presents this vocabulary and Table 40 provides a recommended mapping to the Linked Data
concepts on both the metamodel and model level. Since the prototypical implementation uses attributes of
type table to handle some cases (e.g. inter-model relations with attributes), but the concept does not
consider tables (e.g. it considers “rows” to be objects), some special approaches for handling those are

13 Most importantly processing different branches and backtracking once a dead-end has been reached in a branch.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 99

described based on different cases. The details on how to handle those tables can be found in Table 40 and
the following cases and possible naming conventions to automatically recognise them14 have been
identified:

1. Direct transformation into triples – This is the case with the Property collector, where the table
denotes triples that should be serialised as such. In such a case each individual row represents a
different triple. (Naming convention: call the attribute “Property collector” and use the column
names “Subject”, “Predicate” and “Object” to identify the parts of a triple.)

2. Inter-model reference with attributes – Some implementations do not allow having attributes on
inter-model relations. A workaround for this is to create a table where a row represents a relation
and one of the columns denotes the target of the relation. The table represents the type of relation
and the other columns represent the attributes attached to it. (Naming convention: end the
attribute name with “(iref)” and the column containing the target “cv:to”)

3. Primitive attributes with cardinality bigger than 1 (unordered) – In some cases several primitive
values (strings, numbers etc.) can be provided for the same object. Tables represent a way of
depicting those, where the table represents the attribute and each row represents one primitive
value for it. Such a table should only have one column, otherwise it would not be a primitive
attribute. (Naming convention: end the attribute name with “(multiple uo)”)

4. Primitive attributes with cardinality bigger than 1 (ordered) – Same as case 3, with the difference
that the order of the values (and therefore the rows) is relevant. (Naming convention: end the
attribute name with “(multiple o)”)

5. Simplification for omitting modelling objects (unordered) – Sometimes it is easier or more user
friendly to model objects similar to attributes instead of objects on the modelling canvas. In such a
case a table can be used, where the table represents the relation towards the “hidden” objects and
each row represents an object. This also means that such objects cannot exist without the relation
and the object containing the table. The columns represent the attributes that the (row) object can
have. (Naming convention: end the attribute name with “(object uo)”)

6. Simplification for omitting modelling objects (ordered) – Same as case 5, with the difference that
the order of the relations towards the objects (and therefore the rows) is relevant. (Naming
convention: end the attribute name with “(object o)”)

Specific Linked Data constructs
Some general constructs to be used as types. The here presented concepts should be considered to
be on the meta²-model level. The cv: prefix should stand for “http://www.comvantage.eu/mm#”
Construct Description

cv:Model
(The set of all possible models) A class containing models,
meaning that a resource of this type represents a model. For
example the model type Business process is a subclass of this.

cv:Modelling_object

(The set of all possible concept instances) A class containing
elements used in models, meaning that resources of this type
represent an instance/object. For example the concept class
Activity is a subclass of this.

cv:Modelling_relation_a

(The set of all possible relation instances with attributes) A class
containing relations which have properties (attributes),
meaning that resources of this type represent a relation with
attribute values. The resources should also use cv:from and
cv:to to indicate the source and target of the relation. For

14 An alternative is to use special types in the Linked Data describing the metamodel to denote those cases. Such
details are however left open to the specific implementations.

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 100

Specific Linked Data constructs
Some general constructs to be used as types. The here presented concepts should be considered to
be on the meta²-model level. The cv: prefix should stand for “http://www.comvantage.eu/mm#”
Construct Description

example the relation class followed by is a subclass of this, since
it should have a property that allows stating additional
conditions.

cv:modelling_relation_na

(The set of all possible relations without attributes) A class of
properties containing relations without properties (attributes)
between resources, meaning that properties of this type have
no attributes. For example the configuration of relation, which
does not have any properties, is an instance of this.

cv:attribute

(The set of all attributes) A class of properties containing
concept properties (attributes), meaning that properties of this
type represent an attribute and the object is its value. It is a
subclass of rdf:Property. For example Instructions of an Activity
is an instance of this.

cv:contains
A property stating that a thing (e.g. element, relation) is
contained by a larger thing. It is the general contains relation
from the decomposition.

cv:inseparable A sub-property of cv:contains, depicting the inseparable type.
cv:separable A sub-property of cv:contains, depicting the separable type.
cv:index A concept to denote the index or order for certain relations.

cv:described_in A property stating that additional information about a thing
(e.g. element, relation) can be found in a different graph.

cv:from

A property providing the source of a relation with properties
(i.e. of cv:Modelling_relation_a type). The subject is the
relation and the object is the source. It is not possible to use
rdf:domain to denote the source of a relation, because the
domain is specified on the schema level.

cv:to

A property providing the target of a relation with properties
(i.e. of cv:Modelling_relation_a type). The subject is the
relation and the object is the target. It is not possible to use
rdf:range to denote the target of a relation, because the range
is specified on the schema level.

Table 39: Linked Data constructs recommended for the serialisation

Metamodel level
Modelling Concept Linked Data mapping

Any Model type is … • Instance of rdfs:Class
• Subclass of cv:Model

Any Object class is … • Instance of rdfs:Class
• Subclass of cv:Modelling_object

Any Relation class with attributes
is …

• Instance of rdfs:Class
• Subclass of cv:Modelling_relation_a

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 101

Any Relation class without
attributes is … • Instance of cv:modelling_relation_na (and rdf:Property)

Any (not table) Attribute is … • Instance of cv:attribute (and rdf:Property)
Any case 1 Table attribute is … • Nothing on this level

Any case 2 Table attribute is …

Table / Attribute:
• Treat like: Any Relation class with attributes

Column (not denoting target):
• Depends on column type. Treat like:

o Any Relation class without attributes, or
o Any Attribute

Any case 3 Table attribute is … Table / Attribute:
• Treat like: Any Attribute

Any case 4 Table attribute is … Table / Attribute
• Treat like: Any Relation class with attributes

Any case 5 Table attribute is …

Table / Attribute:
• Treat like: Any Relation class without attributes

Table type (if available):
• Treat like: Any Object class

Column:
• Depends on column type. Treat like:

o Relation class without attributes, or
o Any Attribute

Any case 6 Table attribute is …

Table / Attribute:
• Treat like: Any Relation class with attributes

Table type (if available):
• Treat like: Any Object class

Column:
• Depends on column type. Treat like:

o Relation class without attributes, or
o Any Attribute

Model level
Note: “corresponding X” should be understood in context to the Metamodel level. For example when
an instance of type “Activity” is transformed, then “the corresponding Object type class” means the
Linked Data concept created for the “Activity” object class (e.g. cvmm:Activity).
Modelling Concept Linked Data mapping

A Repository with objects is … • Instance of cv:Model.
• An RDF-Graph (called model graph).

Any Model is … • Instance of the corresponding Model type class.
• An RDF-Graph (called model graph).

Any Object is … • Instance of the corresponding Object type class in every
model graph where it is used.

Any Relation with attributes is …

• Instance of the corresponding Relation type class in
every model graph where it is used.

• It also has two properties indicating the source and
target using cv:from and cv:to.

Any Relation without attributes is
…

• A triple where the subject is the source element and
the object is the target element. The predicate should

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 102

use the corresponding Relation type property. If the
two elements are in different models then the
statement should also be in both model graphs. The
cv:described_in property should be used to state in
both graphs where the other element can be found.

Any (not table) Attribute value is
…

• The object of a triple where the subject is the element
and the predicate is the corresponding Attribute
property.

A row for a case 1 Table is …

• A triple where the subject, predicate and object are
based on the corresponding columns. If any of those
columns is empty, then the object the table is in should
be used as its value. For example if the subject column
is empty in one row of object X, then X should be used
as the subject for that row.

A row for a case 2 Table is …

• Instance of the corresponding Relation type class in
every model graph where it is used.

• It also has two properties indicating the source and
target using cv:from and cv:to. The cv:from points
towards the object the table is in, and the cv:to
towards the target of the inter-model reference (based
on column denoting target).

• Every other column (not denoting target) should be
treated like an attribute or relation (depending on
column type) of the relation instance.

A row for a case 3 Table is …

• The value in the column (should be only one) should be
the object of a triple where the subject is the element
containing the table and the predicate is the
corresponding Attribute property.

A row for a case 4 Table is …

• Instance of the corresponding Relation type class in
every model graph where it is used.

• It also has two properties indicating the source and
target using cv:from and cv:to. The cv:from points
towards the object the table is in, and the cv:to
property should have the value in the column (should
be only one) as the object.

• The cv:index property should be used to indicate the
order, where the subject is the relation and the object
is the order number.

A row for a case 5 Table is …

• Instance of the corresponding Object type class (based
on table class, if available) and of cv:Modelling_object
in every model graph where it is used. It should be
considered to be part of the same model graph as the
element containing the table.

• A triple where the subject is the element containing the
table and the object is the object created (item above).
The predicate should use the corresponding Relation
type property (based on Table/Attribute).

• Every column should be treated like an attribute or
relation (depending on column type) of the object
created (two items above).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 103

A row for a case 6 Table is …

• Instance of the corresponding Object type class (based
on table class, if available) and of cv:Modelling_object
in every model graph where it is used. It should be
considered to be part of the same model graph as the
element containing the table.

• An Instance of the corresponding Relation type class in
every model graph where it is used (based on
Table/Attribute).

• The relation has two properties indicating the source
and target using cv:from and cv:to. The cv:from points
towards the object the table is in, and the cv:to
property should have the object created (two items
above) as the object. Also the cv:index property should
be used to indicate the order, where the subject is the
relation and the object is the order number.

• Every column should be treated like an attribute or
relation (depending on column type) of the object
created (three items above).

Table 40: Recommended transformation of modelling objects into Linked Data

3.3.11 Recommended approach for Comparison of model serialisations in Linked Data
This functionality should be used to determine differences between two models by using their Linked Data
serialisations. The here described approach focuses on how they can be compared. For this it considers a
directed comparison of a source and a target. The here presented approach poses some requirements that
must be fulfilled:

 The serialisation has to be in conform to the Resource Description Framework (RDF)
 Different elements (i.e. resources) use different identifiers (i.e. URI) in both serialisations, while the

same elements in both the source and the target use the same identifier.

When those requirements are met a simple comparison of the triples of both serialisations can be achieved
by:
1. Load all the triples from the source and the target into separate lists (source list and target list)
2. For each triple in the source list, if it is also contained in the target list

2.1. Remove the entry from both the source and the target list
In the end the source list will contain all the triples that have to be removed and the target list contains all
the triples that have to be added in order to change the source to the target. In other words, both lists
represent the difference between the source and the target. This is the result of the functionality and can
be presented in different ways (e.g. graphical visualisation of differences, using a readable RDF syntax, a
tree view based on the resources used as subjects/object etc.).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 104

4 OUTLOOK AND CONCLUSION
This document describes a refinement of the ComVantage modelling method conceptualisation taking
input from the initial specification (D3.1.1), its initial adaptations (D6.2.1, D7.2.1, D8.2.1), and the
experience with its initial implementation (D3.4.1, D3.5.1). The document presents a top-down ontological
approach in specialising highly abstract concepts and partitioning them in order to be fit for a modelling
language. This specification is aimed to be independent on the implementation, and implementation
decisions must be further taken towards facilitating user experience tailored for a specific implementation
platform.

Several adaptations can be noted from the approach of the initial specification (D3.1.1):

 A top-down approach has been taken for a superior semantic cohesion, compared to the bottom-
up initial approach;

 The metamodel has been significantly changed with additions (KPI modelling), merges (the value
structure covering now the variability in product structure, service structure or a mix of them) and
substitutions (KPI quantified causality instead of the purely visual Fishbone diagram);

 The focus has been placed on model machine-readability and on the richness of information that
become query-able in the models (through their RDF serialisation). Therefore, several purely visual
model types have been removed or replaced with semantically richer ones (e.g. the Fishbone
diagram, the task decomposition view);

 The simulation approach initially suggested (based on system dynamics) has been replaced with a
discrete event approach, due to the requirement for process-centricity and process-driven
evaluation;

 A more generic overall approach has been taken, compared to the initially adopted supply chain
management context; further developments towards the supply chain modelling direction will be
subject of adaptation work in the application area where this has a high relevance (D7.2.2).

Further work will be invested in the adaptation deliverables D6.2.2, D7.2.2, D8.2.2 in the direction of
assimilating stronger domain specificity from the application areas of ComVantage and also to integrate
late agile developments of the OMI prototype (mostly in the sense of app modelling). Modelling guidelines
will be developed in D3.5.2, based on the implementation outcome (D3.4.2).

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 105

5 REFERENCES
Bicheno, J. and Holweg, M. (2009) The Lean Toolbox, PICSIE Books.
Gordijn, J. and Akkermans H. (2001) E3-value: Design and Evaluation of e-Business Models. IEEE Intelligent

Systems, Vol. 16(4): 11-17
Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-oriented domain analysis (FODA) feasibility
study, Software Engineering Institute, Technical Report CMU/SEI-90-TR-021

Kern H., Hummel A., Kuhne S (2011) Towards a Comparative Analysis of Meta-Metamodels, The 11th
Workshop on Domain-Specific Modelling, Portland, USA.
http://www.dsmforum.org/events/DSM11/Papers/kern.pdf

Weske, M. (2007) Business Process Management: Concepts, Languages, Architectures, Springer

Zachman, J.A. (1987) A Framework for Information systems Architecture, IBM Systems Journal, 26(3):276-
293

D3.1.1 Specification of Modelling Method Including Conceptualisation Outline (first iteration)

D3.4.x Prototype of ComVantage modelling tool

D3.5.x Guidelines for the Secure Collaboration Model

D5.2.2 UI Presentation and Workflow Models

D6.2.x Adaptation of Secure Information Model Concept (WP6)

D7.2.x Adaptation of Secure Information Model Concept (WP7)

D8.2.x Adaptation of Secure Information Model Concept (WP8)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 106

6 APPENDIX

6.1 Example Query for Capability Matching
In the following query use the one BIND statement to provide the point of
origin that has the required Capabilities (e.g. Role ...)

Depending on the types of capabilities, this query has to be adapted.

SELECT ?role ?reqCount ?perf (COUNT(?avaSkill) AS ?avaCount)

WHERE {

 # Count how many skills are required by ?role

 {

 SELECT ?role (COUNT(?reqSkill) AS ?reqCount)

 WHERE {

 # NOTE # Use this bind to specify for which role you are looking

 BIND (<http://test.org#Role-365603-XYZ> AS ?role)

 ?role cv:SkillsKnowledge ?reqList .

 ?reqList rdf:rest*/rdf:first ?reqSkill .

 }

 GROUP BY ?role

 }

 # Here find out what specific skills ?role requires

 ?role cv:SkillsKnowledge ?reqList .

 ?reqList rdf:rest*/rdf:first ?reqSkill .

 ?reqSkill cv:Type ?reqSkillTyp .

 ?reqSkill cv:Label ?reqSkillLab .

 ?reqSkill cv:Level ?reqSkillLev .

 # Here the skills of the performers are determined. Only the ones that fulfil
the required skill are considered "available"

 ?perf rdf:type cv:Performer .

 ?perf cv:SkillsKnowledge ?avaList .

 ?avaList rdf:rest*/rdf:first ?avaSkill .

 ?avaSkill cv:Type ?avaSkillTyp .

 ?avaSkill cv:Label ?avaSkillLab .

 ?avaSkill cv:Level ?avaSkillLev .

 # This is the part that compares the capabilities.

 FILTER(?avaSkillTyp = ?reqSkillTyp)

 FILTER(?avaSkillLab = ?reqSkillLab)

 FILTER(?avaSkillLev >= ?reqSkillLev)

}

GROUP BY ?perf ?role ?reqCount

HAVING (COUNT(?avaSkill) = ?reqCount)

Only groups where the count of "availalbe" skills is the same as the count of
required

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 107

6.2 Metamodel diagrams
The here presented metamodels are a visual supplement and should not be seen as a replacement for the
descriptions in the other chapters.

Representation Description

It represents a group (on conceptual level, ends with the word
“group”) or model type (in the implementation recommendation).
Models themselves can be seen as objects with attributes and
participate in relations. The things it contains should be available in
the group or be available to model in a model type.

It represents the typical concept. If the border is drawn with a
dotted line, then the class is there for readability reasons (e.g. to
prevent relation lines going from one end of the model to the other
etc.). In the hierarchy descriptions, if it contains a number and has a
dashed line then it means that it is also used in a different place of
the hierarchy (i.e. it is the sub-type of multiple other concepts).

This represents a set of classes. It should be understood by its name,
i.e. “Procedural element” means any element that can be used in
the Procedural Aspect, “Liable entity” means any element that is
also a liable entity etc.

A normal relation between two concepts. The lines indicate what
sources and targets are allowed.

It is a relation that spans through different groups/model types.

This represents generalisation or in another word inheritance. It is
used to indicate sub- and super-types.

Figure 27: Metamodel for high abstraction level (General concepts)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 108

Figure 28: Metamodel for middle abstraction level (Aspect-specific concepts)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 109

Figure 29: Metamodel for low abstraction level (Scope-specific concepts)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 110

Figure 30: Metamodel concept hierarchy (Templates)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 111

Figure 31: Metamodel concept hierarchy (other)

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 112

Figure 32: Metamodel relation hierarchy

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 113

Figure 33: Metamodel for low abstraction level (Scope-specific concepts) of the recommended implementation

D3.1.2 – Specification of Modelling Method Including Conceptualisation Outline

WP3 – Secure Information Model

© ComVantage Consortium – 2014 114

DISCLAIMER
The information in this document is provided "as is", and no guarantee or warranty is given that the
information is fit for any particular purpose. The above referenced consortium members shall have no
liability for damages of any kind including without limitation direct, special, indirect, or consequential
damages that may result from the use of these materials subject to any liability which is mandatory due to
applicable law.
Copyright 2014 by SAP AG, Asociación de Empresas Tecnológicas Innovalia, Ben-Gurion University of the
Negev, BOC Business Objectives Consulting S.L.U, Comau S.p.A., Technische Universität Dresden, Dresscode
21 GmbH, Evidian S.A., ISN Innovation Service Network d.o.o., Kölsch & Altmann GmbH, Nextel S.A., RST
Industrie Automation GmbH, University of Vienna.

	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1 Overview
	1.1 Introduction
	1.2 Scope of the Document
	1.3 Related Documents
	1.4 Terms and Acronyms used in this Document

	2 The ComVantage Modelling Method Specification
	2.1 Approach for Modelling Method Refinement
	2.1.1 Envisioned Modelling Procedure
	2.1.2 Assumptions about the Meta²-model

	2.2 Structure of Modelling Method
	2.3 General Modelling Method Concepts
	2.3.1 Aspect-independent Concepts
	2.3.1.1 Templates, Instances and Instantiation
	2.3.1.2 Inclusion types and Control elements
	2.3.1.3 Decomposition
	2.3.1.4 Implication
	2.3.1.5 Specialisation

	2.3.2 Generally used Properties of Concepts

	2.4 Aspect-specific Modelling Method Concepts
	2.4.1 Concepts in Motivator Aspect
	2.4.2 Concepts in Participant Aspect
	2.4.3 Concepts in Procedural Aspect
	2.4.4 Concepts in Collaborative Aspect
	2.4.5 Inter-Aspect Concepts

	2.5 Scope-specific Modelling Method Concepts
	2.5.1 Specialised Concepts in Structural Aspect
	2.5.1.1 Concepts mostly focused in Motivator Aspect
	2.5.1.2 Concepts mostly focused in Participant Aspect
	2.5.1.3 Recommended data types for Points of interactions

	2.5.2 Specialised Concepts in Behavioural Aspect
	2.5.2.1 Concepts mostly focused in Procedural Aspect
	2.5.2.2 Concepts mostly focused in Collaborative Aspect

	2.6 Assignment of Concepts to Aspect Specialisations
	2.6.1 Business Scope
	2.6.2 Enterprise Scope
	2.6.3 Requirements Scope
	2.6.4 App development Scope
	2.6.5 App execution set-up Scope
	2.6.6 Evaluation Scope

	2.7 Mechanisms and Algorithms
	2.7.1 Determine Instances/Templates for required Capabilities
	2.7.2 Derivation of Participant collaboration
	2.7.3 Interaction stepper
	2.7.4 Derivation of Orchestration
	2.7.5 Gathering access requirements
	2.7.6 Access requirement coverage check
	2.7.7 Calculation of KPIs/Variables
	2.7.8 Simulation of Procedural models
	2.7.9 Business model evaluation
	2.7.10 Serialisation of models as Linked Data
	2.7.11 Comparison of model serialisations in Linked Data
	2.7.12 Model querying

	3 Implementation specific recommendations
	3.1 Recommended Classes, Relations and Attributes
	3.2 Proposed Notation Guidelines
	3.3 Recommended approaches for Mechanism and Algorithm implementations
	3.3.1 Recommended approach for Determine Instances/Templates for required Capabilities
	3.3.2 Recommended approach for Derivation of Participant collaboration
	3.3.3 Recommended approach for Interaction stepper
	3.3.4 Recommended approach for Derivation of Orchestration
	3.3.5 Recommended approach for Gathering access requirements
	3.3.6 Recommended approach for Access requirement coverage check
	3.3.7 Recommended approach for Calculation of KPIs/Variables
	3.3.8 Recommended approach for Simulation of Procedural models
	3.3.9 Recommended approach for Business model evaluation
	3.3.10 Recommended approach for Serialisation of models as Linked Data
	3.3.11 Recommended approach for Comparison of model serialisations in Linked Data

	4 Outlook and Conclusion
	5 References
	6 Appendix
	6.1 Example Query for Capability Matching
	6.2 Metamodel diagrams

	DISCLAIMER

